Sort by
Items per page

Send to

Choose Destination

Search results

Items: 30


NRF2 as a Therapeutic Target in Neurodegenerative Diseases.

Brandes MS, Gray NE.

ASN Neuro. 2020 Jan-Dec;12:1759091419899782. doi: 10.1177/1759091419899782. No abstract available.


Loss of NRF2 leads to impaired mitochondrial function, decreased synaptic density and exacerbated age-related cognitive deficits.

Zweig JA, Caruso M, Brandes MS, Gray NE.

Exp Gerontol. 2019 Dec 13;131:110767. doi: 10.1016/j.exger.2019.110767. [Epub ahead of print]


Centella Asiatica Improves Memory and Promotes Antioxidative Signaling in 5XFAD Mice.

Matthews DG, Caruso M, Murchison CF, Zhu JY, Wright KM, Harris CJ, Gray NE, Quinn JF, Soumyanath A.

Antioxidants (Basel). 2019 Dec 8;8(12). pii: E630. doi: 10.3390/antiox8120630.


Centella asiatica triterpenes for diabetic neuropathy: a randomized, double-blind, placebo-controlled, pilot clinical study.

Lou JS, Dimitrova DM, Murchison C, Arnold GC, Belding H, Seifer N, Le N, Andrea SB, Gray NE, Wright KM, Caruso M, Soumyanath A.

Esper Dermatol. 2018 Jun;20(2 Suppl 1):12-22. doi: 10.23736/S1128-9155.18.00455-7.


An ANGPTL4-ceramide-protein kinase Cζ axis mediates chronic glucocorticoid exposure-induced hepatic steatosis and hypertriglyceridemia in mice.

Chen TC, Lee RA, Tsai SL, Kanamaluru D, Gray NE, Yiv N, Cheang RT, Tan JH, Lee JY, Fitch MD, Hellerstein MK, Wang JC.

J Biol Chem. 2019 Jun 7;294(23):9213-9224. doi: 10.1074/jbc.RA118.006259. Epub 2019 May 3.


Centella asiatica attenuates hippocampal mitochondrial dysfunction and improves memory and executive function in β-amyloid overexpressing mice.

Gray NE, Zweig JA, Caruso M, Zhu JY, Wright KM, Quinn JF, Soumyanath A.

Mol Cell Neurosci. 2018 Dec;93:1-9. doi: 10.1016/j.mcn.2018.09.002. Epub 2018 Sep 22.


Centella asiatica increases hippocampal synaptic density and improves memory and executive function in aged mice.

Gray NE, Zweig JA, Caruso M, Martin MD, Zhu JY, Quinn JF, Soumyanath A.

Brain Behav. 2018 Jul;8(7):e01024. doi: 10.1002/brb3.1024. Epub 2018 Jun 19.


Centella asiatica - Phytochemistry and mechanisms of neuroprotection and cognitive enhancement.

Gray NE, Alcazar Magana A, Lak P, Wright KM, Quinn J, Stevens JF, Maier CS, Soumyanath A.

Phytochem Rev. 2018 Feb;17(1):161-194. doi: 10.1007/s11101-017-9528-y. Epub 2017 Sep 20.


Angiopoietin-like 4 (Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes.

Gray NE, Lam LN, Yang K, Zhou AY, Koliwad S, Wang JC.

J Biol Chem. 2017 Sep 29;292(39):16135. doi: 10.1074/jbc.A111.294124. No abstract available.


Centella asiatica Attenuates Mitochondrial Dysfunction and Oxidative Stress in Aβ-Exposed Hippocampal Neurons.

Gray NE, Zweig JA, Matthews DG, Caruso M, Quinn JF, Soumyanath A.

Oxid Med Cell Longev. 2017;2017:7023091. doi: 10.1155/2017/7023091. Epub 2017 Aug 13.


The C-terminal fibrinogen-like domain of angiopoietin-like 4 stimulates adipose tissue lipolysis and promotes energy expenditure.

McQueen AE, Kanamaluru D, Yan K, Gray NE, Wu L, Li ML, Chang A, Hasan A, Stifler D, Koliwad SK, Wang JC.

J Biol Chem. 2017 Sep 29;292(39):16122-16134. doi: 10.1074/jbc.M117.803973. Epub 2017 Aug 24.


The chromatin remodelling factor ATRX suppresses R-loops in transcribed telomeric repeats.

Nguyen DT, Voon HPJ, Xella B, Scott C, Clynes D, Babbs C, Ayyub H, Kerry J, Sharpe JA, Sloane-Stanley JA, Butler S, Fisher CA, Gray NE, Jenuwein T, Higgs DR, Gibbons RJ.

EMBO Rep. 2017 Jun;18(6):914-928. doi: 10.15252/embr.201643078. Epub 2017 May 9.


Centella asiatica attenuates Aβ-induced neurodegenerative spine loss and dendritic simplification.

Gray NE, Zweig JA, Murchison C, Caruso M, Matthews DG, Kawamoto C, Harris CJ, Quinn JF, Soumyanath A.

Neurosci Lett. 2017 Apr 12;646:24-29. doi: 10.1016/j.neulet.2017.02.072. Epub 2017 Mar 6.


STX, a Novel Membrane Estrogen Receptor Ligand, Protects Against Amyloid-β Toxicity.

Gray NE, Zweig JA, Kawamoto C, Quinn JF, Copenhaver PF.

J Alzheimers Dis. 2016;51(2):391-403. doi: 10.3233/JAD-150756.


Centella asiatica modulates antioxidant and mitochondrial pathways and improves cognitive function in mice.

Gray NE, Harris CJ, Quinn JF, Soumyanath A.

J Ethnopharmacol. 2016 Mar 2;180:78-86. doi: 10.1016/j.jep.2016.01.013. Epub 2016 Jan 16.


Alterations in mitochondrial number and function in Alzheimer's disease fibroblasts.

Gray NE, Quinn JF.

Metab Brain Dis. 2015 Oct;30(5):1275-8. doi: 10.1007/s11011-015-9667-z. Epub 2015 Apr 12.


Centella asiatica Attenuates Amyloid-β-Induced Oxidative Stress and Mitochondrial Dysfunction.

Gray NE, Sampath H, Zweig JA, Quinn JF, Soumyanath A.

J Alzheimers Dis. 2015;45(3):933-46. doi: 10.3233/JAD-142217.


Caffeoylquinic acids in Centella asiatica protect against amyloid-β toxicity.

Gray NE, Morré J, Kelley J, Maier CS, Stevens JF, Quinn JF, Soumyanath A.

J Alzheimers Dis. 2014;40(2):359-73. doi: 10.3233/JAD-131913. Erratum in: J Alzheimers Dis. 2014;41(3):957.


Regulation of triglyceride metabolism by glucocorticoid receptor.

Wang JC, Gray NE, Kuo T, Harris CA.

Cell Biosci. 2012 May 28;2(1):19. doi: 10.1186/2045-3701-2-19.


Angiopoietin-like 4 (Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes.

Gray NE, Lam LN, Yang K, Zhou AY, Koliwad S, Wang JC.

J Biol Chem. 2012 Mar 9;287(11):8444-56. doi: 10.1074/jbc.M111.294124. Epub 2012 Jan 19. Erratum in: J Biol Chem. 2017 Sep 29;292(39):16135.


Intragenic enhancers act as alternative promoters.

Kowalczyk MS, Hughes JR, Garrick D, Lynch MD, Sharpe JA, Sloane-Stanley JA, McGowan SJ, De Gobbi M, Hosseini M, Vernimmen D, Brown JM, Gray NE, Collavin L, Gibbons RJ, Flint J, Taylor S, Buckle VJ, Milne TA, Wood WG, Higgs DR.

Mol Cell. 2012 Feb 24;45(4):447-58. doi: 10.1016/j.molcel.2011.12.021. Epub 2012 Jan 19.


Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism.

Koliwad SK, Kuo T, Shipp LE, Gray NE, Backhed F, So AY, Farese RV Jr, Wang JC.

J Biol Chem. 2009 Sep 18;284(38):25593-601. doi: 10.1074/jbc.M109.025452. Epub 2009 Jul 23. Erratum in: J Biol Chem. 2012 Feb 3;287(6):4394.


Endocrine-immune-paracrine interactions in prostate cells as targeted by phytomedicines.

Gray NE, Liu X, Choi R, Blackman MR, Arnold JT.

Cancer Prev Res (Phila). 2009 Feb;2(2):134-42. doi: 10.1158/1940-6207.CAPR-08-0062. Epub 2009 Jan 13.


Human prostate stromal cells stimulate increased PSA production in DHEA-treated prostate cancer epithelial cells.

Arnold JT, Gray NE, Jacobowitz K, Viswanathan L, Cheung PW, McFann KK, Le H, Blackman MR.

J Steroid Biochem Mol Biol. 2008 Sep;111(3-5):240-6. doi: 10.1016/j.jsbmb.2008.06.008. Epub 2008 Jun 22.


Effects of neuropeptide Y on feeding microstructure: dissociation of appetitive and consummatory actions.

Baird JP, Gray NE, Fischer SG.

Behav Neurosci. 2006 Aug;120(4):937-51.


Effects of melanin-concentrating hormone on licking microstructure and brief-access taste responses.

Baird JP, Rios C, Gray NE, Walsh CE, Fischer SG, Pecora AL.

Am J Physiol Regul Integr Comp Physiol. 2006 Nov;291(5):R1265-74. Epub 2006 Jun 8.


The expression profile for the tumour suppressor gene PTEN and associated polymorphic markers.

Hamilton JA, Stewart LM, Ajayi L, Gray IC, Gray NE, Roberts KG, Watson GJ, Kaisary AV, Snary D.

Br J Cancer. 2000 May;82(10):1671-6.


Mutation and expression analysis of the putative prostate tumour-suppressor gene PTEN.

Gray IC, Stewart LM, Phillips SM, Hamilton JA, Gray NE, Watson GJ, Spurr NK, Snary D.

Br J Cancer. 1998 Nov;78(10):1296-300.



Ellery E, Russell DM, Guild LR, Gray NE.

Science. 1941 Feb 7;93(2406):139-41. No abstract available.


Supplemental Content

Support Center