Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 33

1.

A Mini-ISY100 Transposon Delivery System Effective in γ Proteobacteria.

Conte E, Mende L, Grainge I, Colloms SD.

Front Microbiol. 2019 Feb 27;10:280. doi: 10.3389/fmicb.2019.00280. eCollection 2019.

2.

Replication fork collapse at a protein-DNA roadblock leads to fork reversal, promoted by the RecQ helicase.

Weaver GM, Mettrick KA, Corocher TA, Graham A, Grainge I.

Mol Microbiol. 2019 Feb;111(2):455-472. doi: 10.1111/mmi.14166. Epub 2018 Dec 9.

PMID:
30466158
3.

Activation of Xer-recombination at dif: structural basis of the FtsKγ-XerD interaction.

Keller AN, Xin Y, Boer S, Reinhardt J, Baker R, Arciszewska LK, Lewis PJ, Sherratt DJ, Löwe J, Grainge I.

Sci Rep. 2016 Oct 6;6:33357. doi: 10.1038/srep33357.

4.

Inducing a Site Specific Replication Blockage in E. coli Using a Fluorescent Repressor Operator System.

Mettrick KA, Lawrence N, Mason C, Weaver GM, Corocher TA, Grainge I.

J Vis Exp. 2016 Aug 21;(114). doi: 10.3791/54434.

5.

Biological Nanomotors with a Revolution, Linear, or Rotation Motion Mechanism.

Guo P, Noji H, Yengo CM, Zhao Z, Grainge I.

Microbiol Mol Biol Rev. 2016 Jan 27;80(1):161-86. doi: 10.1128/MMBR.00056-15. Print 2016 Mar. Review.

6.

Stability of blocked replication forks in vivo.

Mettrick KA, Grainge I.

Nucleic Acids Res. 2016 Jan 29;44(2):657-68. doi: 10.1093/nar/gkv1079. Epub 2015 Oct 20.

7.

Two classes of nucleic acid translocation motors: rotation and revolution without rotation.

Guo P, Grainge I, Zhao Z, Vieweger M.

Cell Biosci. 2014 Sep 16;4(1):54. doi: 10.1186/2045-3701-4-54. eCollection 2014.

8.

FtsK-dependent XerCD-dif recombination unlinks replication catenanes in a stepwise manner.

Shimokawa K, Ishihara K, Grainge I, Sherratt DJ, Vazquez M.

Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20906-11. doi: 10.1073/pnas.1308450110. Epub 2013 Nov 11.

9.

Simple topology: FtsK-directed recombination at the dif site.

Grainge I.

Biochem Soc Trans. 2013 Apr;41(2):595-600. doi: 10.1042/BST20120299. Review.

PMID:
23514160
10.

Activation of XerCD-dif recombination by the FtsK DNA translocase.

Grainge I, Lesterlin C, Sherratt DJ.

Nucleic Acids Res. 2011 Jul;39(12):5140-8. doi: 10.1093/nar/gkr078. Epub 2011 Mar 2.

11.

FtsK--a bacterial cell division checkpoint?

Grainge I.

Mol Microbiol. 2010 Dec;78(5):1055-7.

PMID:
21155139
12.

FtsK DNA translocase: the fast motor that knows where it's going.

Crozat E, Grainge I.

Chembiochem. 2010 Nov 2;11(16):2232-43. doi: 10.1002/cbic.201000347. Review.

PMID:
20922738
13.

Separating speed and ability to displace roadblocks during DNA translocation by FtsK.

Crozat E, Meglio A, Allemand JF, Chivers CE, Howarth M, Vénien-Bryan C, Grainge I, Sherratt DJ.

EMBO J. 2010 Apr 21;29(8):1423-33. doi: 10.1038/emboj.2010.29. Epub 2010 Apr 8.

14.

The Escherichia coli DNA translocase FtsK.

Sherratt DJ, Arciszewska LK, Crozat E, Graham JE, Grainge I.

Biochem Soc Trans. 2010 Apr;38(2):395-8. doi: 10.1042/BST0380395. Review.

PMID:
20298190
16.

Sporulation: SpoIIIE is the key to cell differentiation.

Grainge I.

Curr Biol. 2008 Sep 23;18(18):R871-2. doi: 10.1016/j.cub.2008.07.047.

17.

Molecular mechanism of sequence-directed DNA loading and translocation by FtsK.

Löwe J, Ellonen A, Allen MD, Atkinson C, Sherratt DJ, Grainge I.

Mol Cell. 2008 Aug 22;31(4):498-509. doi: 10.1016/j.molcel.2008.05.027.

18.

Unlinking chromosome catenanes in vivo by site-specific recombination.

Grainge I, Bregu M, Vazquez M, Sivanathan V, Ip SC, Sherratt DJ.

EMBO J. 2007 Oct 3;26(19):4228-38. Epub 2007 Sep 6.

19.

Biochemical analysis of a DNA replication origin in the archaeon Aeropyrum pernix.

Grainge I, Gaudier M, Schuwirth BS, Westcott SL, Sandall J, Atanassova N, Wigley DB.

J Mol Biol. 2006 Oct 20;363(2):355-69. Epub 2006 Aug 1.

PMID:
16978641
20.

Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo.

Possoz C, Filipe SR, Grainge I, Sherratt DJ.

EMBO J. 2006 Jun 7;25(11):2596-604. Epub 2006 May 25.

21.

Conformational changes induced by nucleotide binding in Cdc6/ORC from Aeropyrum pernix.

Singleton MR, Morales R, Grainge I, Cook N, Isupov MN, Wigley DB.

J Mol Biol. 2004 Oct 22;343(3):547-57.

PMID:
15465044
22.

Biochemical analysis of components of the pre-replication complex of Archaeoglobus fulgidus.

Grainge I, Scaife S, Wigley DB.

Nucleic Acids Res. 2003 Aug 15;31(16):4888-98.

23.

Symmetric DNA sites are functionally asymmetric within Flp and Cre site-specific DNA recombination synapses.

Grainge I, Pathania S, Vologodskii A, Harshey RM, Jayaram M.

J Mol Biol. 2002 Jul 12;320(3):515-27.

PMID:
12096907
25.

Biochemical and kinetic analysis of the RNase active sites of the integrase/tyrosine family site-specific DNA recombinases.

Sau AK, DeVue Tribble G, Grainge I, Frohlich RF, Knudsen BR, Jayaram M.

J Biol Chem. 2001 Dec 7;276(49):46612-23. Epub 2001 Oct 3. Erratum in: J Biol Chem 2002 Feb 22;277(8):6758.

26.

Inhibition of Flp recombinase by the topoisomerase I-targeting drugs, camptothecin and NSC-314622.

Frøhlich RF, Hansen SG, Lisby M, Grainge I, Westergaard O, Jayaram M, Knudsen BR.

J Biol Chem. 2001 Mar 9;276(10):6993-7. Epub 2001 Jan 10.

27.

Geometry of site alignment during int family recombination: antiparallel synapsis by the Flp recombinase.

Grainge I, Buck D, Jayaram M.

J Mol Biol. 2000 May 19;298(5):749-64.

PMID:
10801346
28.

The integrase family of recombinase: organization and function of the active site.

Grainge I, Jayaram M.

Mol Microbiol. 1999 Aug;33(3):449-56. Review.

29.

Xer site-specific recombination. DNA strand rejoining by recombinase XerC.

Grainge I, Sherratt DJ.

J Biol Chem. 1999 Mar 5;274(10):6763-9.

30.

Wild-type Flp recombinase cleaves DNA in trans.

Lee J, Jayaram M, Grainge I.

EMBO J. 1999 Feb 1;18(3):784-91.

31.

Unveiling two distinct ribonuclease activities and a topoisomerase activity in a site-specific DNA recombinase.

Xu CJ, Grainge I, Lee J, Harshey RM, Jayaram M.

Mol Cell. 1998 Apr;1(5):729-39.

32.

Action of site-specific recombinases XerC and XerD on tethered Holliday junctions.

Arciszewska LK, Grainge I, Sherratt DJ.

EMBO J. 1997 Jun 16;16(12):3731-43.

33.

Effects of Holliday junction position on Xer-mediated recombination in vitro.

Arciszewska L, Grainge I, Sherratt D.

EMBO J. 1995 Jun 1;14(11):2651-60.

Supplemental Content

Loading ...
Support Center