Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 47

1.

Inactivation of the monofunctional peptidoglycan glycosyltransferase SgtB allows Staphylococcus aureus to survive in the absence of lipoteichoic acid.

Karinou E, Schuster CF, Pazos M, Vollmer W, Gründling A.

J Bacteriol. 2018 Oct 15. pii: JB.00574-18. doi: 10.1128/JB.00574-18. [Epub ahead of print]

2.

Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation.

Rismondo J, Percy MG, Gründling A.

J Biol Chem. 2018 Mar 2;293(9):3293-3306. doi: 10.1074/jbc.RA117.001614. Epub 2018 Jan 17.

3.

Cyclic di-adenosine monophosphate (c-di-AMP) is required for osmotic regulation in Staphylococcus aureus but dispensable for viability in anaerobic conditions.

Zeden MS, Schuster CF, Bowman L, Zhong Q, Williams HD, Gründling A.

J Biol Chem. 2018 Mar 2;293(9):3180-3200. doi: 10.1074/jbc.M117.818716. Epub 2018 Jan 11.

4.

Evolutionary Adaptation of the Essential tRNA Methyltransferase TrmD to the Signaling Molecule 3',5'-cAMP in Bacteria.

Zhang Y, Agrebi R, Bellows LE, Collet JF, Kaever V, Gründling A.

J Biol Chem. 2017 Jan 6;292(1):313-327. doi: 10.1074/jbc.M116.758896. Epub 2016 Nov 23.

5.

New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus.

Bowman L, Zeden MS, Schuster CF, Kaever V, Gründling A.

J Biol Chem. 2016 Dec 30;291(53):26970-26986. doi: 10.1074/jbc.M116.747709. Epub 2016 Nov 10.

6.

Old concepts, new molecules and current approaches applied to the bacterial nucleotide signalling field.

Gründling A, Lee VT.

Philos Trans R Soc Lond B Biol Sci. 2016 Nov 5;371(1707). pii: 20150503. doi: 10.1098/rstb.2015.0503. Review.

7.

The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in Staphylococcus aureus.

Schuster CF, Bellows LE, Tosi T, Campeotto I, Corrigan RM, Freemont P, Gründling A.

Sci Signal. 2016 Aug 16;9(441):ra81. doi: 10.1126/scisignal.aaf7279.

8.

The Cell Wall Polymer Lipoteichoic Acid Becomes Nonessential in Staphylococcus aureus Cells Lacking the ClpX Chaperone.

Bæk KT, Bowman L, Millership C, Dupont Søgaard M, Kaever V, Siljamäki P, Savijoki K, Varmanen P, Nyman TA, Gründling A, Frees D.

MBio. 2016 Aug 9;7(4). pii: e01228-16. doi: 10.1128/mBio.01228-16.

10.

ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria.

Corrigan RM, Bellows LE, Wood A, Gründling A.

Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1710-9. doi: 10.1073/pnas.1522179113. Epub 2016 Mar 7.

11.

Binding of Cyclic Di-AMP to the Staphylococcus aureus Sensor Kinase KdpD Occurs via the Universal Stress Protein Domain and Downregulates the Expression of the Kdp Potassium Transporter.

Moscoso JA, Schramke H, Zhang Y, Tosi T, Dehbi A, Jung K, Gründling A.

J Bacteriol. 2015 Jul 20;198(1):98-110. doi: 10.1128/JB.00480-15. Print 2016 Jan 1.

12.

Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers.

Hengge R, Gründling A, Jenal U, Ryan R, Yildiz F.

J Bacteriol. 2016 Jan 1;198(1):15-26. Review.

13.

Editorial overview: Cell regulation: when you think you know it all, there is another layer to be discovered.

Gross CA, Gründling A.

Curr Opin Microbiol. 2015 Apr;24:v-vii. doi: 10.1016/j.mib.2015.02.001. Epub 2015 Feb 20. No abstract available.

PMID:
25708065
14.

Cross-talk between two nucleotide-signaling pathways in Staphylococcus aureus.

Corrigan RM, Bowman L, Willis AR, Kaever V, Gründling A.

J Biol Chem. 2015 Feb 27;290(9):5826-39. doi: 10.1074/jbc.M114.598300. Epub 2015 Jan 9.

15.

Complex structure and biochemical characterization of the Staphylococcus aureus cyclic diadenylate monophosphate (c-di-AMP)-binding protein PstA, the founding member of a new signal transduction protein family.

Campeotto I, Zhang Y, Mladenov MG, Freemont PS, Gründling A.

J Biol Chem. 2015 Jan 30;290(5):2888-901. doi: 10.1074/jbc.M114.621789. Epub 2014 Dec 11.

16.

Structural and mechanistic insight into the Listeria monocytogenes two-enzyme lipoteichoic acid synthesis system.

Campeotto I, Percy MG, MacDonald JT, Förster A, Freemont PS, Gründling A.

J Biol Chem. 2014 Oct 10;289(41):28054-69. doi: 10.1074/jbc.M114.590570. Epub 2014 Aug 15.

17.

β-Lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease.

Bæk KT, Gründling A, Mogensen RG, Thøgersen L, Petersen A, Paulander W, Frees D.

Antimicrob Agents Chemother. 2014 Aug;58(8):4593-603. doi: 10.1128/AAC.02802-14. Epub 2014 May 27.

18.

Lipoteichoic acid synthesis and function in gram-positive bacteria.

Percy MG, Gründling A.

Annu Rev Microbiol. 2014;68:81-100. doi: 10.1146/annurev-micro-091213-112949. Epub 2014 May 5. Review.

PMID:
24819367
19.

Differential localization of LTA synthesis proteins and their interaction with the cell division machinery in Staphylococcus aureus.

Reichmann NT, Piçarra Cassona C, Monteiro JM, Bottomley AL, Corrigan RM, Foster SJ, Pinho MG, Gründling A.

Mol Microbiol. 2014 Apr;92(2):273-86. doi: 10.1111/mmi.12551. Epub 2014 Mar 20.

20.

Potassium uptake systems in Staphylococcus aureus: new stories about ancient systems.

Gründling A.

MBio. 2013 Oct 8;4(5):e00784-13. doi: 10.1128/mBio.00784-13.

21.

Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid.

Palomino MM, Allievi MC, Gründling A, Sanchez-Rivas C, Ruzal SM.

Microbiology. 2013 Nov;159(Pt 11):2416-26. doi: 10.1099/mic.0.070607-0. Epub 2013 Sep 6.

PMID:
24014660
22.

Revised mechanism of D-alanine incorporation into cell wall polymers in Gram-positive bacteria.

Reichmann NT, Cassona CP, Gründling A.

Microbiology. 2013 Sep;159(Pt 9):1868-77. doi: 10.1099/mic.0.069898-0. Epub 2013 Jul 15.

23.

Cyclic di-AMP: another second messenger enters the fray.

Corrigan RM, Gründling A.

Nat Rev Microbiol. 2013 Aug;11(8):513-24. doi: 10.1038/nrmicro3069. Epub 2013 Jul 1. Review.

24.

Systematic identification of conserved bacterial c-di-AMP receptor proteins.

Corrigan RM, Campeotto I, Jeganathan T, Roelofs KG, Lee VT, Gründling A.

Proc Natl Acad Sci U S A. 2013 May 28;110(22):9084-9. doi: 10.1073/pnas.1300595110. Epub 2013 May 13.

25.

Harnessing the power of transposon mutagenesis for antibacterial target identification and evaluation.

Meredith TC, Wang H, Beaulieu P, Gründling A, Roemer T.

Mob Genet Elements. 2012 Jul 1;2(4):171-178.

26.

The immune evasion protein Sbi of Staphylococcus aureus occurs both extracellularly and anchored to the cell envelope by binding lipoteichoic acid.

Smith EJ, Corrigan RM, van der Sluis T, Gründling A, Speziale P, Geoghegan JA, Foster TJ.

Mol Microbiol. 2012 Feb;83(4):789-804. doi: 10.1111/j.1365-2958.2011.07966.x. Epub 2012 Jan 18.

27.

c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress.

Corrigan RM, Abbott JC, Burhenne H, Kaever V, Gründling A.

PLoS Pathog. 2011 Sep;7(9):e1002217. doi: 10.1371/journal.ppat.1002217. Epub 2011 Sep 1.

28.

Proteolytic cleavage inactivates the Staphylococcus aureus lipoteichoic acid synthase.

Wörmann ME, Reichmann NT, Malone CL, Horswill AR, Gründling A.

J Bacteriol. 2011 Oct;193(19):5279-91. doi: 10.1128/JB.00369-11. Epub 2011 Jul 22.

29.

Wall teichoic Acid-dependent adsorption of staphylococcal siphovirus and myovirus.

Xia G, Corrigan RM, Winstel V, Goerke C, Gründling A, Peschel A.

J Bacteriol. 2011 Aug;193(15):4006-9. doi: 10.1128/JB.01412-10. Epub 2011 Jun 3.

30.

Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes.

Reichmann NT, Gründling A.

FEMS Microbiol Lett. 2011 Jun;319(2):97-105. doi: 10.1111/j.1574-6968.2011.02260.x. Epub 2011 Mar 25. Review.

31.

Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes.

Wörmann ME, Corrigan RM, Simpson PJ, Matthews SJ, Gründling A.

Mol Microbiol. 2011 Feb;79(3):566-83. doi: 10.1111/j.1365-2958.2010.07472.x. Epub 2010 Dec 7.

32.

In vitro analysis of the Staphylococcus aureus lipoteichoic acid synthase enzyme using fluorescently labeled lipids.

Karatsa-Dodgson M, Wörmann ME, Gründling A.

J Bacteriol. 2010 Oct;192(20):5341-9. doi: 10.1128/JB.00453-10. Epub 2010 Aug 13.

33.

Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in Listeria monocytogenes.

Webb AJ, Karatsa-Dodgson M, Gründling A.

Mol Microbiol. 2009 Oct;74(2):299-314. doi: 10.1111/j.1365-2958.2009.06829.x. Epub 2009 Aug 4.

34.

Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS.

Lu D, Wörmann ME, Zhang X, Schneewind O, Gründling A, Freemont PS.

Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1584-9. doi: 10.1073/pnas.0809020106. Epub 2009 Jan 23.

35.

Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus.

Gründling A, Schneewind O.

Proc Natl Acad Sci U S A. 2007 May 15;104(20):8478-83. Epub 2007 May 3.

36.

Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus.

Gründling A, Schneewind O.

J Bacteriol. 2007 Mar;189(6):2521-30. Epub 2007 Jan 5.

37.

A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression.

Shen A, Kamp HD, Gründling A, Higgins DE.

Genes Dev. 2006 Dec 1;20(23):3283-95.

38.

Staphylococcus aureus mutants with increased lysostaphin resistance.

Gründling A, Missiakas DM, Schneewind O.

J Bacteriol. 2006 Sep;188(17):6286-97.

39.
40.

Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence.

Gründling A, Burrack LS, Bouwer HG, Higgins DE.

Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12318-23. Epub 2004 Aug 9.

41.
42.
43.

Holins kill without warning.

Gründling A, Manson MD, Young R.

Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9348-52. Epub 2001 Jul 17.

44.

Genetic and biochemical analysis of dimer and oligomer interactions of the lambda S holin.

Gründling A, Bläsi U, Young R.

J Bacteriol. 2000 Nov;182(21):6082-90.

45.

Dimerization between the holin and holin inhibitor of phage lambda.

Gründling A, Smith DL, Bläsi U, Young R.

J Bacteriol. 2000 Nov;182(21):6075-81.

46.

Biochemical and genetic evidence for three transmembrane domains in the class I holin, lambda S.

Gründling A, Bläsi U, Young R.

J Biol Chem. 2000 Jan 14;275(2):769-76.

47.

Downstream box-anti-downstream box interactions are dispensable for translation initiation of leaderless mRNAs.

Resch A, Tedin K, Gründling A, Mündlein A, Bläsi U.

EMBO J. 1996 Sep 2;15(17):4740-8.

Supplemental Content

Loading ...
Support Center