Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 70

1.

A versatile microfluidic device for highly inclined thin illumination microscopy in the moss Physcomitrella patens.

Kozgunova E, Goshima G.

Sci Rep. 2019 Oct 23;9(1):15182. doi: 10.1038/s41598-019-51624-9.

2.

Moss Kinesin-14 KCBP Accelerates Chromatid Motility in Anaphase.

Yoshida MW, Yamada M, Goshima G.

Cell Struct Funct. 2019;44(2):95-104. doi: 10.1247/csf.19015.

3.

Identification of 15 New Bypassable Essential Genes of Fission Yeast.

Takeda A, Saitoh S, Ohkura H, Sawin KE, Goshima G.

Cell Struct Funct. 2019 Sep 27;44(2):113-119. doi: 10.1247/csf.19025. Epub 2019 Aug 31. Erratum in: Cell Struct Funct. 2019;44(2):171.

4.

Transient cotransformation of CRISPR/Cas9 and oligonucleotide templates enables efficient editing of target loci in Physcomitrella patens.

Yi P, Goshima G.

Plant Biotechnol J. 2019 Aug 27. doi: 10.1111/pbi.13238. [Epub ahead of print] No abstract available.

5.

Editorial overview: Cell division - from molecules to tissues.

Goshima G, Bellaïche Y.

Curr Opin Cell Biol. 2019 Oct;60:iii-v. doi: 10.1016/j.ceb.2019.06.006. Epub 2019 Jul 26. No abstract available.

PMID:
31352995
6.

Kinetochore protein depletion underlies cytokinesis failure and somatic polyploidization in the moss Physcomitrella patens.

Kozgunova E, Nishina M, Goshima G.

Elife. 2019 Mar 5;8. pii: e43652. doi: 10.7554/eLife.43652.

7.

Drosophila kinesin-8 stabilizes the kinetochore-microtubule interaction.

Edzuka T, Goshima G.

J Cell Biol. 2019 Feb 4;218(2):474-488. doi: 10.1083/jcb.201807077. Epub 2018 Dec 11.

8.

Microtubule nucleation and organization without centrosomes.

Yi P, Goshima G.

Curr Opin Plant Biol. 2018 Dec;46:1-7. doi: 10.1016/j.pbi.2018.06.004. Epub 2018 Jul 2. Review.

PMID:
29981930
9.

The KCH Kinesin Drives Nuclear Transport and Cytoskeletal Coalescence to Promote Tip Cell Growth in Physcomitrella patens.

Yamada M, Goshima G.

Plant Cell. 2018 Jul;30(7):1496-1510. doi: 10.1105/tpc.18.00038. Epub 2018 Jun 7.

10.

SPIRAL2 Stabilises Endoplasmic Microtubule Minus Ends in the Moss Physcomitrella patens.

Leong SY, Yamada M, Yanagisawa N, Goshima G.

Cell Struct Funct. 2018 Mar 28;43(1):53-60. doi: 10.1247/csf.18001. Epub 2018 Mar 15.

11.

Cytoplasmic MTOCs control spindle orientation for asymmetric cell division in plants.

Kosetsu K, Murata T, Yamada M, Nishina M, Boruc J, Hasebe M, Van Damme D, Goshima G.

Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8847-E8854. doi: 10.1073/pnas.1713925114. Epub 2017 Oct 2.

12.

Human microcephaly ASPM protein is a spindle pole-focusing factor that functions redundantly with CDK5RAP2.

Tungadi EA, Ito A, Kiyomitsu T, Goshima G.

J Cell Sci. 2017 Nov 1;130(21):3676-3684. doi: 10.1242/jcs.203703. Epub 2017 Sep 7.

13.

14-3-3 regulation of Ncd reveals a new mechanism for targeting proteins to the spindle in oocytes.

Beaven R, Bastos RN, Spanos C, Romé P, Cullen CF, Rappsilber J, Giet R, Goshima G, Ohkura H.

J Cell Biol. 2017 Oct 2;216(10):3029-3039. doi: 10.1083/jcb.201704120. Epub 2017 Aug 31.

14.

Multiple kinesin-14 family members drive microtubule minus end-directed transport in plant cells.

Yamada M, Tanaka-Takiguchi Y, Hayashi M, Nishina M, Goshima G.

J Cell Biol. 2017 Jun 5;216(6):1705-1714. doi: 10.1083/jcb.201610065. Epub 2017 Apr 25.

15.

Shortening of Microtubule Overlap Regions Defines Membrane Delivery Sites during Plant Cytokinesis.

de Keijzer J, Kieft H, Ketelaar T, Goshima G, Janson ME.

Curr Biol. 2017 Feb 20;27(4):514-520. doi: 10.1016/j.cub.2016.12.043. Epub 2017 Jan 26.

16.

Mitotic Spindle Assembly in Land Plants: Molecules and Mechanisms.

Yamada M, Goshima G.

Biology (Basel). 2017 Jan 25;6(1). pii: E6. doi: 10.3390/biology6010006. Review.

17.

Five factors can reconstitute all three phases of microtubule polymerization dynamics.

Moriwaki T, Goshima G.

J Cell Biol. 2016 Nov 7;215(3):357-368. Epub 2016 Oct 31.

18.

Live Cell Microscopy-Based RNAi Screening in the Moss Physcomitrella patens.

Miki T, Nakaoka Y, Goshima G.

Methods Mol Biol. 2016;1470:225-46. doi: 10.1007/978-1-4939-6337-9_18.

PMID:
27581297
19.

Imaging Mitosis in the Moss Physcomitrella patens.

Yamada M, Miki T, Goshima G.

Methods Mol Biol. 2016;1413:263-82. doi: 10.1007/978-1-4939-3542-0_17.

PMID:
27193855
20.

Intra-spindle Microtubule Assembly Regulates Clustering of Microtubule-Organizing Centers during Early Mouse Development.

Watanabe S, Shioi G, Furuta Y, Goshima G.

Cell Rep. 2016 Apr 5;15(1):54-60. doi: 10.1016/j.celrep.2016.02.087. Epub 2016 Mar 24.

21.

Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission.

Uehara R, Kamasaki T, Hiruma S, Poser I, Yoda K, Yajima J, Gerlich DW, Goshima G.

Mol Biol Cell. 2016 Mar 1;27(5):812-27. doi: 10.1091/mbc.E15-02-0101. Epub 2016 Jan 13.

22.

The microtubule catastrophe promoter Sentin delays stable kinetochore-microtubule attachment in oocytes.

Głuszek AA, Cullen CF, Li W, Battaglia RA, Radford SJ, Costa MF, McKim KS, Goshima G, Ohkura H.

J Cell Biol. 2015 Dec 21;211(6):1113-20. doi: 10.1083/jcb.201507006. Epub 2015 Dec 14.

23.

Microcephaly protein Asp focuses the minus ends of spindle microtubules at the pole and within the spindle.

Ito A, Goshima G.

J Cell Biol. 2015 Dec 7;211(5):999-1009. doi: 10.1083/jcb.201507001.

24.

Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants.

Jonsson E, Yamada M, Vale RD, Goshima G.

Nat Plants. 2015 Jul;1(7). pii: 15087.

25.

NACK kinesin is required for metaphase chromosome alignment and cytokinesis in the moss Physcomitrella patens.

Naito H, Goshima G.

Cell Struct Funct. 2015;40(1):31-41. doi: 10.1247/csf.14016.

26.

Cytoplasmic nucleation and atypical branching nucleation generate endoplasmic microtubules in Physcomitrella patens.

Nakaoka Y, Kimura A, Tani T, Goshima G.

Plant Cell. 2015 Jan;27(1):228-42. doi: 10.1105/tpc.114.134817. Epub 2015 Jan 23.

27.

RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens.

Miki T, Nishina M, Goshima G.

Plant Cell Physiol. 2015 Apr;56(4):737-49. doi: 10.1093/pcp/pcv002. Epub 2015 Jan 13.

PMID:
25588389
28.

Gohta Goshima: questing for answers on the mitotic spindle.

Goshima G, Sedwick C.

J Cell Biol. 2014 Jul 21;206(2):148-9. doi: 10.1083/jcb.2062pi. No abstract available.

29.

Identification of the augmin complex in the filamentous fungus Aspergillus nidulans.

Edzuka T, Yamada L, Kanamaru K, Sawada H, Goshima G.

PLoS One. 2014 Jul 8;9(7):e101471. doi: 10.1371/journal.pone.0101471. eCollection 2014.

30.

Friction on MAP determines its traveling direction on microtubules.

Watanabe S, Goshima G.

Dev Cell. 2014 Apr 14;29(1):5-6. doi: 10.1016/j.devcel.2014.03.022.

31.

Endogenous localizome identifies 43 mitotic kinesins in a plant cell.

Miki T, Naito H, Nishina M, Goshima G.

Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):E1053-61. doi: 10.1073/pnas.1311243111. Epub 2014 Mar 3.

32.

MICROTUBULE-ASSOCIATED PROTEIN65 is essential for maintenance of phragmoplast bipolarity and formation of the cell plate in Physcomitrella patens.

Kosetsu K, de Keijzer J, Janson ME, Goshima G.

Plant Cell. 2013 Nov;25(11):4479-92. doi: 10.1105/tpc.113.117432. Epub 2013 Nov 22.

33.

Genes involved in centrosome-independent mitotic spindle assembly in Drosophila S2 cells.

Moutinho-Pereira S, Stuurman N, Afonso O, Hornsveld M, Aguiar P, Goshima G, Vale RD, Maiato H.

Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19808-13. doi: 10.1073/pnas.1320013110. Epub 2013 Nov 19.

34.

Loss of a Rho-regulated actin nucleator, mDia2, impairs cytokinesis during mouse fetal erythropoiesis.

Watanabe S, De Zan T, Ishizaki T, Yasuda S, Kamijo H, Yamada D, Aoki T, Kiyonari H, Kaneko H, Shimizu R, Yamamoto M, Goshima G, Narumiya S.

Cell Rep. 2013 Nov 27;5(4):926-32. doi: 10.1016/j.celrep.2013.10.021. Epub 2013 Nov 14.

35.

Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase.

Uehara R, Tsukada Y, Kamasaki T, Poser I, Yoda K, Gerlich DW, Goshima G.

J Cell Biol. 2013 Aug 19;202(4):623-36. doi: 10.1083/jcb.201302123.

36.

Augmin-dependent microtubule nucleation at microtubule walls in the spindle.

Kamasaki T, O'Toole E, Kita S, Osumi M, Usukura J, McIntosh JR, Goshima G.

J Cell Biol. 2013 Jul 8;202(1):25-33. doi: 10.1083/jcb.201304031. Epub 2013 Jul 1.

37.

Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin.

Li W, Moriwaki T, Tani T, Watanabe T, Kaibuchi K, Goshima G.

J Cell Biol. 2012 Nov 26;199(5):849-62. doi: 10.1083/jcb.201206101.

38.

An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation.

Nakaoka Y, Miki T, Fujioka R, Uehara R, Tomioka A, Obuse C, Kubo M, Hiwatashi Y, Goshima G.

Plant Cell. 2012 Apr;24(4):1478-93. doi: 10.1105/tpc.112.098509. Epub 2012 Apr 13.

39.

Identification of a TPX2-like microtubule-associated protein in Drosophila.

Goshima G.

PLoS One. 2011;6(11):e28120. doi: 10.1371/journal.pone.0028120. Epub 2011 Nov 30.

40.

EB1 promotes microtubule dynamics by recruiting Sentin in Drosophila cells.

Li W, Miki T, Watanabe T, Kakeno M, Sugiyama I, Kaibuchi K, Goshima G.

J Cell Biol. 2011 Jun 13;193(6):973-83. doi: 10.1083/jcb.201101108. Epub 2011 Jun 6.

41.

Functional central spindle assembly requires de novo microtubule generation in the interchromosomal region during anaphase.

Uehara R, Goshima G.

J Cell Biol. 2010 Oct 18;191(2):259-67. doi: 10.1083/jcb.201004150. Epub 2010 Oct 11.

42.

Assessment of mitotic spindle phenotypes in Drosophila S2 cells.

Goshima G.

Methods Cell Biol. 2010;97:259-75. doi: 10.1016/S0091-679X(10)97015-5. Review.

PMID:
20719276
43.

Control of mitotic spindle length.

Goshima G, Scholey JM.

Annu Rev Cell Dev Biol. 2010;26:21-57. doi: 10.1146/annurev-cellbio-100109-104006. Review.

PMID:
20604709
44.

Determinants of myosin II cortical localization during cytokinesis.

Uehara R, Goshima G, Mabuchi I, Vale RD, Spudich JA, Griffis ER.

Curr Biol. 2010 Jun 22;20(12):1080-5. doi: 10.1016/j.cub.2010.04.058. Epub 2010 Jun 10.

45.

New look inside the spindle: microtubule-dependent microtubule generation within the spindle.

Goshima G, Kimura A.

Curr Opin Cell Biol. 2010 Feb;22(1):44-9. doi: 10.1016/j.ceb.2009.11.012. Epub 2009 Dec 21. Review.

PMID:
20022736
46.

[Mitotic spindle formation mediated by augmin protein complex].

Uehara R, Goshima G.

Tanpakushitsu Kakusan Koso. 2009 Nov;54(14):1850-5. Review. Japanese. No abstract available.

PMID:
19894586
47.

RNAi in Drosophila S2 cells as a tool for studying cell cycle progression.

Bettencourt-Dias M, Goshima G.

Methods Mol Biol. 2009;545:39-62. doi: 10.1007/978-1-60327-993-2_3.

PMID:
19475381
48.

The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells.

Uehara R, Nozawa RS, Tomioka A, Petry S, Vale RD, Obuse C, Goshima G.

Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):6998-7003. doi: 10.1073/pnas.0901587106. Epub 2009 Apr 14.

49.

Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle.

Goshima G, Mayer M, Zhang N, Stuurman N, Vale RD.

J Cell Biol. 2008 May 5;181(3):421-9. doi: 10.1083/jcb.200711053. Epub 2008 Apr 28.

50.

Functional genomic screen reveals genes involved in lipid-droplet formation and utilization.

Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Wong JS, Vale RD, Walter P, Farese RV.

Nature. 2008 May 29;453(7195):657-61. doi: 10.1038/nature06928. Epub 2008 Apr 13.

Supplemental Content

Loading ...
Support Center