Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 25

1.

Seeing a bright future for a blind fish.

Gore AV, Rohner N, Rétaux S, Jeffery WR.

Dev Biol. 2018 Sep 15;441(2):207-208. doi: 10.1016/j.ydbio.2018.08.004. No abstract available.

2.

An epigenetic mechanism for cavefish eye degeneration.

Gore AV, Tomins KA, Iben J, Ma L, Castranova D, Davis AE, Parkhurst A, Jeffery WR, Weinstein BM.

Nat Ecol Evol. 2018 Jul;2(7):1155-1160. doi: 10.1038/s41559-018-0569-4. Epub 2018 May 28.

3.

The zebrafish: A fintastic model for hematopoietic development and disease.

Gore AV, Pillay LM, Venero Galanternik M, Weinstein BM.

Wiley Interdiscip Rev Dev Biol. 2018 May;7(3):e312. doi: 10.1002/wdev.312. Epub 2018 Feb 13. Review.

4.

A novel perivascular cell population in the zebrafish brain.

Venero Galanternik M, Castranova D, Gore AV, Blewett NH, Jung HM, Stratman AN, Kirby MR, Iben J, Miller MF, Kawakami K, Maraia RJ, Weinstein BM.

Elife. 2017 Apr 11;6. pii: e24369. doi: 10.7554/eLife.24369.

5.

Imaging blood vessels and lymphatic vessels in the zebrafish.

Jung HM, Isogai S, Kamei M, Castranova D, Gore AV, Weinstein BM.

Methods Cell Biol. 2016;133:69-103. doi: 10.1016/bs.mcb.2016.03.023. Epub 2016 Apr 18.

PMID:
27263409
6.

DNA methylation in hematopoietic development and disease.

Gore AV, Weinstein BM.

Exp Hematol. 2016 Sep;44(9):783-790. doi: 10.1016/j.exphem.2016.04.013. Epub 2016 May 10. Review.

7.

Mesenchymal stem cells enhance lung recovery after injury, shock, and chronic stress.

Gore AV, Bible LE, Livingston DH, Mohr AM, Sifri ZC.

Surgery. 2016 May;159(5):1430-5. doi: 10.1016/j.surg.2015.12.006. Epub 2016 Jan 28.

8.

Epigenetic regulation of hematopoiesis by DNA methylation.

Gore AV, Athans B, Iben JR, Johnson K, Russanova V, Castranova D, Pham VN, Butler MG, Williams-Simons L, Nichols JT, Bresciani E, Feldman B, Kimmel CB, Liu PP, Weinstein BM.

Elife. 2016 Jan 27;5:e11813. doi: 10.7554/eLife.11813.

9.

Mesenchymal stem cells reverse bone marrow dysfunction following injury and stress.

Gore AV, Bible LE, Livingston DH, Mohr AM, Sifri ZC.

J Trauma Acute Care Surg. 2015 Oct;79(4):602-8. doi: 10.1097/TA.0000000000000823.

10.

Daily propranolol prevents prolonged mobilization of hematopoietic progenitor cells in a rat model of lung contusion, hemorrhagic shock, and chronic stress.

Bible LE, Pasupuleti LV, Gore AV, Sifri ZC, Kannan KB, Mohr AM.

Surgery. 2015 Sep;158(3):595-601. doi: 10.1016/j.surg.2015.06.031. Epub 2015 Jul 21.

11.

Mesenchymal stem cells reverse trauma and hemorrhagic shock-induced bone marrow dysfunction.

Gore AV, Bible LE, Livingston DH, Mohr AM, Sifri ZC.

J Surg Res. 2015 Dec;199(2):615-21. doi: 10.1016/j.jss.2015.06.023. Epub 2015 Jun 16.

12.

Chronic restraint stress after injury and shock is associated with persistent anemia despite prolonged elevation in erythropoietin levels.

Bible LE, Pasupuleti LV, Gore AV, Sifri ZC, Kannan KB, Mohr AM.

J Trauma Acute Care Surg. 2015 Jul;79(1):91-6; discussion 96-7. doi: 10.1097/TA.0000000000000686.

13.

Mesenchymal stem cells increase T-regulatory cells and improve healing following trauma and hemorrhagic shock.

Gore AV, Bible LE, Song K, Livingston DH, Mohr AM, Sifri ZC.

J Trauma Acute Care Surg. 2015 Jul;79(1):48-52; discussion 52. doi: 10.1097/TA.0000000000000681.

14.

Can mesenchymal stem cells reverse chronic stress-induced impairment of lung healing following traumatic injury?

Gore AV, Bible LE, Livingston DH, Mohr AM, Sifri ZC.

J Trauma Acute Care Surg. 2015 Apr;78(4):767-72. doi: 10.1097/TA.0000000000000592.

15.

Early propranolol administration to severely injured patients can improve bone marrow dysfunction.

Bible LE, Pasupuleti LV, Alzate WD, Gore AV, Song KJ, Sifri ZC, Livingston DH, Mohr AM.

J Trauma Acute Care Surg. 2014 Jul;77(1):54-60; discussion 59-60. doi: 10.1097/TA.0000000000000264.

16.

CBFβ and RUNX1 are required at 2 different steps during the development of hematopoietic stem cells in zebrafish.

Bresciani E, Carrington B, Wincovitch S, Jones M, Gore AV, Weinstein BM, Sood R, Liu PP.

Blood. 2014 Jul 3;124(1):70-8. doi: 10.1182/blood-2013-10-531988. Epub 2014 May 21.

17.

Vascular development in the zebrafish.

Gore AV, Monzo K, Cha YR, Pan W, Weinstein BM.

Cold Spring Harb Perspect Med. 2012 May;2(5):a006684. doi: 10.1101/cshperspect.a006684. Review.

18.

Rspo1/Wnt signaling promotes angiogenesis via Vegfc/Vegfr3.

Gore AV, Swift MR, Cha YR, Lo B, McKinney MC, Li W, Castranova D, Davis A, Mukouyama YS, Weinstein BM.

Development. 2011 Nov;138(22):4875-86. doi: 10.1242/dev.068460. Epub 2011 Oct 17.

19.

Zebrafish as a model for hemorrhagic stroke.

Butler MG, Gore AV, Weinstein BM.

Methods Cell Biol. 2011;105:137-61. doi: 10.1016/B978-0-12-381320-6.00006-0.

PMID:
21951529
20.

Loss of BRCC3 deubiquitinating enzyme leads to abnormal angiogenesis and is associated with syndromic moyamoya.

Miskinyte S, Butler MG, Hervé D, Sarret C, Nicolino M, Petralia JD, Bergametti F, Arnould M, Pham VN, Gore AV, Spengos K, Gazal S, Woimant F, Steinberg GK, Weinstein BM, Tournier-Lasserve E.

Am J Hum Genet. 2011 Jun 10;88(6):718-728. doi: 10.1016/j.ajhg.2011.04.017. Epub 2011 May 19.

21.

Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke.

Gore AV, Lampugnani MG, Dye L, Dejana E, Weinstein BM.

Dis Model Mech. 2008 Nov-Dec;1(4-5):275-81. doi: 10.1242/dmm.000513. Epub 2008 Oct 28.

22.

The zebrafish dorsal axis is apparent at the four-cell stage.

Gore AV, Maegawa S, Cheong A, Gilligan PC, Weinberg ES, Sampath K.

Nature. 2005 Dec 15;438(7070):1030-5. Erratum in: Nature. 2013 Feb 7;494(7435):130.

PMID:
16355228
24.

The nicotine transdermal system.

Gore AV, Chien YW.

Clin Dermatol. 1998 Sep-Oct;16(5):599-615. Review. No abstract available.

PMID:
9787973
25.

Supplemental Content

Support Center