Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 32

1.

Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components.

Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB, Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, El-Naggar MY.

Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12883-8. doi: 10.1073/pnas.1410551111. Epub 2014 Aug 20.

2.

Microbial population and functional dynamics associated with surface potential and carbon metabolism.

Ishii S, Suzuki S, Norden-Krichmar TM, Phan T, Wanger G, Nealson KH, Sekiguchi Y, Gorby YA, Bretschger O.

ISME J. 2014 May;8(5):963-78. doi: 10.1038/ismej.2013.217. Epub 2013 Dec 19.

3.

Electricity generation by microbial fuel cell using microorganisms as catalyst in cathode.

Jang JK, Kan J, Bretschger O, Gorby YA, Hsu L, Kim BH, Nealson KH.

J Microbiol Biotechnol. 2013 Dec;23(12):1765-73.

4.

Filamentous bacteria transport electrons over centimetre distances.

Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, Kjeldsen KU, Schreiber L, Gorby YA, El-Naggar MY, Leung KM, Schramm A, Risgaard-Petersen N, Nielsen LP.

Nature. 2012 Nov 8;491(7423):218-21. doi: 10.1038/nature11586. Epub 2012 Oct 24.

PMID:
23103872
5.

Functionally stable and phylogenetically diverse microbial enrichments from microbial fuel cells during wastewater treatment.

Ishii S, Suzuki S, Norden-Krichmar TM, Nealson KH, Sekiguchi Y, Gorby YA, Bretschger O.

PLoS One. 2012;7(2):e30495. doi: 10.1371/journal.pone.0030495. Epub 2012 Feb 7.

6.

Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1.

El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA.

Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18127-31. doi: 10.1073/pnas.1004880107. Epub 2010 Oct 11.

7.

Quantification of electron transfer rates to a solid phase electron acceptor through the stages of biofilm formation from single cells to multicellular communities.

McLean JS, Wanger G, Gorby YA, Wainstein M, McQuaid J, Ishii SI, Bretschger O, Beyenal H, Nealson KH.

Environ Sci Technol. 2010 Apr 1;44(7):2721-7. doi: 10.1021/es903043p.

PMID:
20199066
8.

Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization.

Torres CI, Krajmalnik-Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, Rittmann BE.

Environ Sci Technol. 2009 Dec 15;43(24):9519-24. doi: 10.1021/es902165y.

PMID:
20000550
9.

Direct involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA.

Shi L, Deng S, Marshall MJ, Wang Z, Kennedy DW, Dohnalkova AC, Mottaz HM, Hill EA, Gorby YA, Beliaev AS, Richardson DJ, Zachara JM, Fredrickson JK.

J Bacteriol. 2008 Aug;190(15):5512-6. doi: 10.1128/JB.00514-08. Epub 2008 May 23.

10.

The molecular density of states in bacterial nanowires.

El-Naggar MY, Gorby YA, Xia W, Nealson KH.

Biophys J. 2008 Jul;95(1):L10-2. doi: 10.1529/biophysj.108.134411. Epub 2008 Apr 25.

11.

Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1.

McLean JS, Pinchuk GE, Geydebrekht OV, Bilskis CL, Zakrajsek BA, Hill EA, Saffarini DA, Romine MF, Gorby YA, Fredrickson JK, Beliaev AS.

Environ Microbiol. 2008 Jul;10(7):1861-76. doi: 10.1111/j.1462-2920.2008.01608.x. Epub 2008 Apr 10.

PMID:
18412550
12.

The influence of cultivation methods on Shewanella oneidensis physiology and proteome expression.

Elias DA, Tollaksen SL, Kennedy DW, Mottaz HM, Giometti CS, McLean JS, Hill EA, Pinchuk GE, Lipton MS, Fredrickson JK, Gorby YA.

Arch Microbiol. 2008 Apr;189(4):313-24. Epub 2007 Nov 21.

13.

Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants.

Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF, Zhou J, Beliaev AS, Bouhenni R, Saffarini D, Mansfeld F, Kim BH, Fredrickson JK, Nealson KH.

Appl Environ Microbiol. 2007 Nov;73(21):7003-12. Epub 2007 Jul 20. Erratum in: Appl Environ Microbiol. 2008 Jan;74(2):553.

14.

Influence of lipopolysaccharide on the surface proton-binding behavior of Shewanella spp.

Phoenix VR, Korenevsky AA, Ferris FG, Gorby YA, Beveridge TJ.

Curr Microbiol. 2007 Aug;55(2):152-7. Epub 2007 Jun 14.

PMID:
17570012
15.

Combined spectroscopic and topographic characterization of nanoscale domains and their distributions of a redox protein on bacterial cell surfaces.

Biju V, Pan D, Gorby YA, Fredrickson J, McLean J, Saffarini D, Lu HP.

Langmuir. 2007 Jan 30;23(3):1333-8.

PMID:
17241055
16.

Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms.

Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK.

Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11358-63. Epub 2006 Jul 18.

17.

Isolation of a high-affinity functional protein complex between OmcA and MtrC: Two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1.

Shi L, Chen B, Wang Z, Elias DA, Mayer MU, Gorby YA, Ni S, Lower BH, Kennedy DW, Wunschel DS, Mottaz HM, Marshall MJ, Hill EA, Beliaev AS, Zachara JM, Fredrickson JK, Squier TC.

J Bacteriol. 2006 Jul;188(13):4705-14.

18.

Differential label-free quantitative proteomic analysis of Shewanella oneidensis cultured under aerobic and suboxic conditions by accurate mass and time tag approach.

Fang R, Elias DA, Monroe ME, Shen Y, McIntosh M, Wang P, Goddard CD, Callister SJ, Moore RJ, Gorby YA, Adkins JN, Fredrickson JK, Lipton MS, Smith RD.

Mol Cell Proteomics. 2006 Apr;5(4):714-25. Epub 2006 Jan 9.

19.

Effects of varied pH, growth rate and temperature using controlled fermentation and batch culture on matrix assisted laser desorption/ionization whole cell protein fingerprints.

Wunschel DS, Hill EA, McLean JS, Jarman K, Gorby YA, Valentine N, Wahl K.

J Microbiol Methods. 2005 Sep;62(3):259-71.

PMID:
15979749
20.

NMR methods for in situ biofilm metabolism studies.

Majors PD, McLean JS, Pinchuk GE, Fredrickson JK, Gorby YA, Minard KR, Wind RA.

J Microbiol Methods. 2005 Sep;62(3):337-44.

PMID:
15936835
21.

Global profiling of Shewanella oneidensis MR-1: expression of hypothetical genes and improved functional annotations.

Kolker E, Picone AF, Galperin MY, Romine MF, Higdon R, Makarova KS, Kolker N, Anderson GA, Qiu X, Auberry KJ, Babnigg G, Beliaev AS, Edlefsen P, Elias DA, Gorby YA, Holzman T, Klappenbach JA, Konstantinidis KT, Land ML, Lipton MS, McCue LA, Monroe M, Pasa-Tolic L, Pinchuk G, Purvine S, Serres MH, Tsapin S, Zakrajsek BA, Zhu W, Zhou J, Larimer FW, Lawrence CE, Riley M, Collart FR, Yates JR 3rd, Smith RD, Giometti CS, Nealson KH, Fredrickson JK, Tiedje JM.

Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2099-104. Epub 2005 Jan 31.

22.

Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria.

Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF.

Biotechnol Bioeng. 2002 Dec 20;80(6):637-49.

PMID:
12378605
23.

Biotransformation of Ni-substituted hydrous ferric oxide by an Fe(III)-reducing bacterium.

Fredrickson JK, Zachara JM, Kukkadapu RK, Gorby YA, Smith SC, Brown CF.

Environ Sci Technol. 2001 Feb 15;35(4):703-12.

PMID:
11349281
24.

Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens strain CN32.

Liu C, Zachara JM, Gorby YA, Szecsody JE, Brown CF.

Environ Sci Technol. 2001 Apr 1;35(7):1385-93.

PMID:
11348071
25.

Cell surface electrochemical heterogeneity of the Fe(III)-reducing bacteria Shewanella putrefaciens.

Sokolov I, Smith DS, Henderson GS, Gorby YA, Ferris FG.

Environ Sci Technol. 2001 Jan 15;35(2):341-7.

PMID:
11347607
26.

Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by Shewanella putrefaciens.

Wildung RE, Gorby YA, Krupka KM, Hess NJ, Li SW, Plymale AE, McKinley JP, Fredrickson JK.

Appl Environ Microbiol. 2000 Jun;66(6):2451-60.

27.

Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate.

Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM, Gray MS.

Appl Environ Microbiol. 1999 Mar;65(3):1214-21.

28.

Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions.

Truex MJ, Peyton BM, Valentine NB, Gorby YA.

Biotechnol Bioeng. 1997 Aug 5;55(3):490-6.

PMID:
18636514
29.

Environmental processes mediated by iron-reducing bacteria.

Fredrickson JK, Gorby YA.

Curr Opin Biotechnol. 1996 Jun;7(3):287-94. Review.

PMID:
8785432
30.

Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals.

Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S.

Arch Microbiol. 1993;159(4):336-44.

PMID:
8387263
31.

Electron Transport in the Dissimilatory Iron Reducer, GS-15.

Gorby YA, Lovley DR.

Appl Environ Microbiol. 1991 Mar;57(3):867-70.

32.

Characterization of the bacterial magnetosome membrane.

Gorby YA, Beveridge TJ, Blakemore RP.

J Bacteriol. 1988 Feb;170(2):834-41.

Supplemental Content

Loading ...
Support Center