Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):E10937-E10946. doi: 10.1073/pnas.1708984114. Epub 2017 Dec 1.

Mapping local and global variability in plant trait distributions.

Author information

1
Department of Forest Resources, University of Minnesota, St. Paul, MN 55108; eebutler@umn.edu abhidatta@jhu.edu.
2
Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205; eebutler@umn.edu abhidatta@jhu.edu.
3
Department of Forest Resources, University of Minnesota, St. Paul, MN 55108.
4
Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108.
5
Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455.
6
Australian Research Council Centre of Excellence in Plant Energy, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
7
Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
8
Max Planck Institute for Biogeochemistry, 07745 Jena, Germany.
9
German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany.
10
UMR 1137 Ecologie et Ecophysiologie Forestières, Université de Lorraine-Institut National de la Recherche Agronomique, 54506 Vandoeuvre-lès-Nancy, France.
11
Environmental Change Institute, University of Oxford, Oxford OX1 3BJ, United Kingdom.
12
Joint Global Change Research Institute, Department of Energy Pacific Northwest National Laboratory, College Park, MD 20740.
13
Department of Geography and Geology, Kingston University London, Surrey KT1 2EE, United Kingdom.
14
School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
15
Plant Diversity and Ecosystems Management Unit, School of Biosciences & Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
16
Department of Theoretical and Applied Sciences, University of Insubria, I-21100 Varese, Italy.
17
Systems Ecology, Department of Ecological Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.
18
Jonah Ventures, Manhattan, KS 66502.
19
Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, 06120 Halle (Saale), Germany.
20
School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom.
21
Instituto Multidisciplinario de Biología Vegetal (Consejo Nacional de Invetigaciones Cientificas y Técnicas), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, CC 495 Córdoba, Argentina.
22
Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, CC 495 Córdoba, Argentina.
23
Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, CEP 14040-901 Bairro Monte Alegre, Ribeirao Preto, Sao Paulo, Brazil.
24
Laboratory of Ecology Ecodiv, Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture, Normandie Université, 76821 Mont-Saint-Aignan, France.
25
Facultad de Ciencias Naturales y Matematicas, Universidad del Rosario, Bogota 110111, Colombia.
26
Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles, Spain.
27
Institut National de la Recherche Agronomique, Unité Sous Contrat 1339, Centre d'Etude Biologique de Chizé, F 79360 Villiers en Bois, France.
28
Centre D'Étude Biologique de Chizé, CNRS-Université La Rochelle (UMR 7372), F-79360 Villiers en Bois, France.
29
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
30
Key Laboratory of Biogeography and Bio-Resource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China.
31
School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa.
32
Senckenberg Biodiversity and Climate Research Centre (BiK-F), 60325 Frankfurt/Main, Germany.
33
Department of Physical Geography, Goethe-University, 60438 Frankfurt/Main, Germany.
34
Institute of Systematic Botany and Ecology, Ulm University, 89081 Ulm, Germany.
35
Team Vegetation, Forest and Landscape Ecology, Wageningen Environmental Research, 6708 PB Wageningen, The Netherlands.
36
Chairgroup Forest Ecology and Management, Wageningen University, 6708 PB Wageningen, The Netherlands.
37
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095.
38
Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan.
39
Department of Botany, University of Wyoming, Laramie, WY 82071.
40
School of Geosciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom.
41
Institute of Biology and Environmental Science, University of Oldenburg, 26111 Oldenburg, Germany.
42
Department of Plant Physiology, Estonian University of Life Sciences, 51014 Tartu, Estonia.
43
Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
44
CSIC, Unitat d'Ecologia Global CREAF-CSIC-UAB, Bellaterra 08193, Barcelona, Catalonia, Spain.
45
CREAF, Cerdanyola del Vallès 08193, Barcelona, Catalonia, Spain.
46
Department of Forestry, Michigan State University, East Lansing, MI 48824.
47
Department of Biology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada.
48
Institute of Environmental Sciences, Leiden University, 2333 CC Leiden, The Netherlands.
49
Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521.
50
Laboratório de Planejamento Ambiental, Embrapa Clima Temperado, Pelotas, RS, Brazil 96010-971.
51
Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
52
Museo Nacional de Ciencias Naturales, CSIC, E-28006 Madrid Spain.
53
Department of Systematic Botany and Functional Biodiversity, University of Leipzig, 04103 Leipzig, Germany.
54
Hawkesbury Institute for the Environment, Western Sydney University, Penrith NSW 2751, Australia.

Abstract

Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.

KEYWORDS:

Bayesian modeling; climate; global; plant traits; spatial statistics

PMID:
29196525
PMCID:
PMC5754770
DOI:
10.1073/pnas.1708984114
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center