Send to

Choose Destination
FASEB J. 2019 Dec;33(12):13176-13188. doi: 10.1096/fj.201901136R. Epub 2019 Sep 5.

Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis.

Author information

Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
Department of Molecular and Medical Pharmacology and Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, (UCLA), Los Angeles, California, USA.
Laboratório de Biologia Vascular, Biologia Cardiovascular Translacional (LIM-64), Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.


Changes in mitochondrial size and shape have been implicated in several physiologic processes, but their role in mitochondrial Ca2+ uptake regulation and overall cellular Ca2+ homeostasis is largely unknown. Here we show that modulating mitochondrial dynamics toward increased fusion through expression of a dominant negative (DN) form of the fission protein [dynamin-related protein 1 (DRP1)] markedly increased both mitochondrial Ca2+ retention capacity and Ca2+ uptake rates in permeabilized C2C12 cells. Similar results were seen using the pharmacological fusion-promoting M1 molecule. Conversely, promoting a fission phenotype through the knockdown of the fusion protein mitofusin (MFN)-2 strongly reduced the mitochondrial Ca2+ uptake speed and capacity in these cells. These changes were not dependent on modifications in mitochondrial calcium uniporter expression, inner membrane potentials, or the mitochondrial permeability transition. Implications of mitochondrial morphology modulation on cellular calcium homeostasis were measured in intact cells; mitochondrial fission promoted lower basal cellular calcium levels and lower endoplasmic reticulum (ER) calcium stores, as indicated by depletion with thapsigargin. Indeed, mitochondrial fission was associated with ER stress. Additionally, the calcium-replenishing process of store-operated calcium entry was impaired in MFN2 knockdown cells, whereas DRP1-DN-promoted fusion resulted in faster cytosolic Ca2+ increase rates. Overall, our results show a novel role for mitochondrial morphology in the regulation of mitochondrial Ca2+ uptake, which impacts cellular Ca2+ homeostasis.-Kowaltowski, A. J., Menezes-Filho, S. L., Assali, E. A., Gonçalves, I. G., Cabral-Costa, J. V., Abreu, P., Miller, N., Nolasco, P., Laurindo, F. R. M., Bruni-Cardoso, A., Shirihai, O. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis.


ER stress; bioenergetics; calcium; metabolism; mitochondria


Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center