Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 145

1.

The international journeys and aliases of Synechococcus elongatus.

Golden SS.

N.Z. J. Bot.. 2019;57(2):70-75. doi: 10.1080/0028825X.2018.1551805. Epub 2018 Dec 5.

PMID:
31551610
2.

Principles of rhythmicity emerging from cyanobacteria.

Golden SS.

Eur J Neurosci. 2019 May 14. doi: 10.1111/ejn.14434. [Epub ahead of print] No abstract available.

PMID:
31087440
3.

A microcin processing peptidase-like protein of the cyanobacterium Synechococcus elongatus is essential for secretion of biofilm-promoting proteins.

Parnasa R, Sendersky E, Simkovsky R, Waldman Ben-Asher H, Golden SS, Schwarz R.

Environ Microbiol Rep. 2019 Jun;11(3):456-463. doi: 10.1111/1758-2229.12751. Epub 2019 Mar 29.

PMID:
30868754
4.

Phototaxis in a wild isolate of the cyanobacterium Synechococcus elongatus.

Yang Y, Lam V, Adomako M, Simkovsky R, Jakob A, Rockwell NC, Cohen SE, Taton A, Wang J, Lagarias JC, Wilde A, Nobles DR, Brand JJ, Golden SS.

Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):E12378-E12387. doi: 10.1073/pnas.1812871115. Epub 2018 Dec 14.

5.

A Hard Day's Night: Cyanobacteria in Diel Cycles.

Welkie DG, Rubin BE, Diamond S, Hood RD, Savage DF, Golden SS.

Trends Microbiol. 2019 Mar;27(3):231-242. doi: 10.1016/j.tim.2018.11.002. Epub 2018 Dec 5. Review.

PMID:
30527541
6.

Predicting the metabolic capabilities of Synechococcus elongatus PCC 7942 adapted to different light regimes.

Broddrick JT, Welkie DG, Jallet D, Golden SS, Peers G, Palsson BO.

Metab Eng. 2019 Mar;52:42-56. doi: 10.1016/j.ymben.2018.11.001. Epub 2018 Nov 13.

PMID:
30439494
7.

Roles for ClpXP in regulating the circadian clock in Synechococcus elongatus.

Cohen SE, McKnight BM, Golden SS.

Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):E7805-E7813. doi: 10.1073/pnas.1800828115. Epub 2018 Jul 30.

8.

Genome-wide fitness assessment during diurnal growth reveals an expanded role of the cyanobacterial circadian clock protein KaiA.

Welkie DG, Rubin BE, Chang YG, Diamond S, Rifkin SA, LiWang A, Golden SS.

Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):E7174-E7183. doi: 10.1073/pnas.1802940115. Epub 2018 Jul 10.

9.

High-throughput interaction screens illuminate the role of c-di-AMP in cyanobacterial nighttime survival.

Rubin BE, Huynh TN, Welkie DG, Diamond S, Simkovsky R, Pierce EC, Taton A, Lowe LC, Lee JJ, Rifkin SA, Woodward JJ, Golden SS.

PLoS Genet. 2018 Apr 2;14(4):e1007301. doi: 10.1371/journal.pgen.1007301. eCollection 2018 Apr.

10.

Structure, function, and mechanism of the core circadian clock in cyanobacteria.

Swan JA, Golden SS, LiWang A, Partch CL.

J Biol Chem. 2018 Apr 6;293(14):5026-5034. doi: 10.1074/jbc.TM117.001433. Epub 2018 Feb 13. Review.

11.

Guidelines for Genome-Scale Analysis of Biological Rhythms.

Hughes ME, Abruzzi KC, Allada R, Anafi R, Arpat AB, Asher G, Baldi P, de Bekker C, Bell-Pedersen D, Blau J, Brown S, Ceriani MF, Chen Z, Chiu JC, Cox J, Crowell AM, DeBruyne JP, Dijk DJ, DiTacchio L, Doyle FJ, Duffield GE, Dunlap JC, Eckel-Mahan K, Esser KA, FitzGerald GA, Forger DB, Francey LJ, Fu YH, Gachon F, Gatfield D, de Goede P, Golden SS, Green C, Harer J, Harmer S, Haspel J, Hastings MH, Herzel H, Herzog ED, Hoffmann C, Hong C, Hughey JJ, Hurley JM, de la Iglesia HO, Johnson C, Kay SA, Koike N, Kornacker K, Kramer A, Lamia K, Leise T, Lewis SA, Li J, Li X, Liu AC, Loros JJ, Martino TA, Menet JS, Merrow M, Millar AJ, Mockler T, Naef F, Nagoshi E, Nitabach MN, Olmedo M, Nusinow DA, Ptáček LJ, Rand D, Reddy AB, Robles MS, Roenneberg T, Rosbash M, Ruben MD, Rund SSC, Sancar A, Sassone-Corsi P, Sehgal A, Sherrill-Mix S, Skene DJ, Storch KF, Takahashi JS, Ueda HR, Wang H, Weitz C, Westermark PO, Wijnen H, Xu Y, Wu G, Yoo SH, Young M, Zhang EE, Zielinski T, Hogenesch JB.

J Biol Rhythms. 2017 Oct;32(5):380-393. doi: 10.1177/0748730417728663. Epub 2017 Nov 3.

12.

NOT Gate Genetic Circuits to Control Gene Expression in Cyanobacteria.

Taton A, Ma AT, Ota M, Golden SS, Golden JW.

ACS Synth Biol. 2017 Dec 15;6(12):2175-2182. doi: 10.1021/acssynbio.7b00203. Epub 2017 Aug 21.

13.

Type 4 pili are dispensable for biofilm development in the cyanobacterium Synechococcus elongatus.

Nagar E, Zilberman S, Sendersky E, Simkovsky R, Shimoni E, Gershtein D, Herzberg M, Golden SS, Schwarz R.

Environ Microbiol. 2017 Jul;19(7):2862-2872. doi: 10.1111/1462-2920.13814. Epub 2017 Jul 13.

PMID:
28585390
14.

Structural basis of the day-night transition in a bacterial circadian clock.

Tseng R, Goularte NF, Chavan A, Luu J, Cohen SE, Chang YG, Heisler J, Li S, Michael AK, Tripathi S, Golden SS, LiWang A, Partch CL.

Science. 2017 Mar 17;355(6330):1174-1180. doi: 10.1126/science.aag2516. Epub 2017 Mar 16.

15.

Redox crisis underlies conditional light-dark lethality in cyanobacterial mutants that lack the circadian regulator, RpaA.

Diamond S, Rubin BE, Shultzaberger RK, Chen Y, Barber CD, Golden SS.

Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):E580-E589. doi: 10.1073/pnas.1613078114. Epub 2017 Jan 10.

16.

Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis.

Broddrick JT, Rubin BE, Welkie DG, Du N, Mih N, Diamond S, Lee JJ, Golden SS, Palsson BO.

Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):E8344-E8353. doi: 10.1073/pnas.1613446113. Epub 2016 Dec 1.

17.

Self-replicating shuttle vectors based on pANS, a small endogenous plasmid of the unicellular cyanobacterium Synechococcus elongatus PCC 7942.

Chen Y, Taton A, Go M, London RE, Pieper LM, Golden SS, Golden JW.

Microbiology. 2016 Dec;162(12):2029-2041. doi: 10.1099/mic.0.000377. Epub 2016 Oct 14.

PMID:
27902432
18.

A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock.

Boyd JS, Cheng RR, Paddock ML, Sancar C, Morcos F, Golden SS.

J Bacteriol. 2016 Aug 25;198(18):2439-47. doi: 10.1128/JB.00235-16. Print 2016 Sep 15.

19.

Mutations in Novel Lipopolysaccharide Biogenesis Genes Confer Resistance to Amoebal Grazing in Synechococcus elongatus.

Simkovsky R, Effner EE, Iglesias-Sánchez MJ, Golden SS.

Appl Environ Microbiol. 2016 Apr 18;82(9):2738-50. doi: 10.1128/AEM.00135-16. Print 2016 May.

20.

The essential gene set of a photosynthetic organism.

Rubin BE, Wetmore KM, Price MN, Diamond S, Shultzaberger RK, Lowe LC, Curtin G, Arkin AP, Deutschbauer A, Golden SS.

Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):E6634-43. doi: 10.1073/pnas.1519220112. Epub 2015 Oct 27.

21.

Giving Time Purpose: The Synechococcus elongatus Clock in a Broader Network Context.

Shultzaberger RK, Boyd JS, Diamond S, Greenspan RJ, Golden SS.

Annu Rev Genet. 2015;49:485-505. doi: 10.1146/annurev-genet-111212-133227. Epub 2015 Oct 5. Review.

22.

Circadian Rhythms in Cyanobacteria.

Cohen SE, Golden SS.

Microbiol Mol Biol Rev. 2015 Dec;79(4):373-85. doi: 10.1128/MMBR.00036-15. Review.

23.

A Microfluidic Platform for Long-Term Monitoring of Algae in a Dynamic Environment.

Luke CS, Selimkhanov J, Baumgart L, Cohen SE, Golden SS, Cookson NA, Hasty J.

ACS Synth Biol. 2016 Jan 15;5(1):8-14. doi: 10.1021/acssynbio.5b00094. Epub 2015 Sep 15.

24.

Circadian rhythms. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria.

Chang YG, Cohen SE, Phong C, Myers WK, Kim YI, Tseng R, Lin J, Zhang L, Boyd JS, Lee Y, Kang S, Lee D, Li S, Britt RD, Rust MJ, Golden SS, LiWang A.

Science. 2015 Jul 17;349(6245):324-8. doi: 10.1126/science.1260031. Epub 2015 Jun 25.

25.

The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth.

Diamond S, Jun D, Rubin BE, Golden SS.

Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):E1916-25. doi: 10.1073/pnas.1504576112. Epub 2015 Mar 30.

26.

Photosynthetic bio-manufacturing: food, fuel, and medicine for the 21st century.

Mayfield S, Golden SS.

Photosynth Res. 2015 Mar;123(3):225-6. doi: 10.1007/s11120-014-0063-z. No abstract available.

PMID:
25676708
27.

Best practices for fluorescence microscopy of the cyanobacterial circadian clock.

Cohen SE, Erb ML, Pogliano J, Golden SS.

Methods Enzymol. 2015;551:211-21. doi: 10.1016/bs.mie.2014.10.014. Epub 2014 Dec 26.

28.

Detecting KaiC phosphorylation rhythms of the cyanobacterial circadian oscillator in vitro and in vivo.

Kim YI, Boyd JS, Espinosa J, Golden SS.

Methods Enzymol. 2015;551:153-73. doi: 10.1016/bs.mie.2014.10.003. Epub 2014 Dec 27.

29.

High-throughput and quantitative approaches for measuring circadian rhythms in cyanobacteria using bioluminescence.

Shultzaberger RK, Paddock ML, Katsuki T, Greenspan RJ, Golden SS.

Methods Enzymol. 2015;551:53-72. doi: 10.1016/bs.mie.2014.10.010. Epub 2014 Dec 26.

30.

Cross-talk and regulatory interactions between the essential response regulator RpaB and cyanobacterial circadian clock output.

Espinosa J, Boyd JS, Cantos R, Salinas P, Golden SS, Contreras A.

Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2198-203. doi: 10.1073/pnas.1424632112. Epub 2015 Feb 4.

31.

Single mutations in sasA enable a simpler ΔcikA gene network architecture with equivalent circadian properties.

Shultzaberger RK, Boyd JS, Katsuki T, Golden SS, Greenspan RJ.

Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):E5069-75. doi: 10.1073/pnas.1419902111. Epub 2014 Nov 10.

32.

Dynamic localization of the cyanobacterial circadian clock proteins.

Cohen SE, Erb ML, Selimkhanov J, Dong G, Hasty J, Pogliano J, Golden SS.

Curr Biol. 2014 Aug 18;24(16):1836-44. doi: 10.1016/j.cub.2014.07.036. Epub 2014 Aug 7.

33.

Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria.

Taton A, Unglaub F, Wright NE, Zeng WY, Paz-Yepes J, Brahamsha B, Palenik B, Peterson TC, Haerizadeh F, Golden SS, Golden JW.

Nucleic Acids Res. 2014;42(17):e136. doi: 10.1093/nar/gku673. Epub 2014 Jul 29.

34.

Active output state of the Synechococcus Kai circadian oscillator.

Paddock ML, Boyd JS, Adin DM, Golden SS.

Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):E3849-57. doi: 10.1073/pnas.1315170110. Epub 2013 Sep 16.

35.

An allele of the crm gene blocks cyanobacterial circadian rhythms.

Boyd JS, Bordowitz JR, Bree AC, Golden SS.

Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13950-5. doi: 10.1073/pnas.1312793110. Epub 2013 Aug 5.

36.

Natural variants of photosystem II subunit D1 tune photochemical fitness to solar intensity.

Vinyard DJ, Gimpel J, Ananyev GM, Cornejo MA, Golden SS, Mayfield SP, Dismukes GC.

J Biol Chem. 2013 Feb 22;288(8):5451-62. doi: 10.1074/jbc.M112.394668. Epub 2012 Dec 27.

37.

Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator.

Kim YI, Vinyard DJ, Ananyev GM, Dismukes GC, Golden SS.

Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17765-9. doi: 10.1073/pnas.1216401109. Epub 2012 Oct 15.

38.

Impairment of O-antigen production confers resistance to grazing in a model amoeba-cyanobacterium predator-prey system.

Simkovsky R, Daniels EF, Tang K, Huynh SC, Golden SS, Brahamsha B.

Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16678-83. doi: 10.1073/pnas.1214904109. Epub 2012 Sep 24.

39.

Primer on agar-based microbial imaging mass spectrometry.

Yang JY, Phelan VV, Simkovsky R, Watrous JD, Trial RM, Fleming TC, Wenter R, Moore BS, Golden SS, Pogliano K, Dorrestein PC.

J Bacteriol. 2012 Nov;194(22):6023-8. doi: 10.1128/JB.00823-12. Epub 2012 Jul 20. Review.

40.

Gene transfer in Leptolyngbya sp. strain BL0902, a cyanobacterium suitable for production of biomass and bioproducts.

Taton A, Lis E, Adin DM, Dong G, Cookson S, Kay SA, Golden SS, Golden JW.

PLoS One. 2012;7(1):e30901. doi: 10.1371/journal.pone.0030901. Epub 2012 Jan 24.

41.

The itty-bitty time machine genetics of the cyanobacterial circadian clock.

Mackey SR, Golden SS, Ditty JL.

Adv Genet. 2011;74:13-53. doi: 10.1016/B978-0-12-387690-4.00002-7. Review.

42.

Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator.

Rust MJ, Golden SS, O'Shea EK.

Science. 2011 Jan 14;331(6014):220-3. doi: 10.1126/science.1197243.

43.

Simplicity and complexity in the cyanobacterial circadian clock mechanism.

Dong G, Kim YI, Golden SS.

Curr Opin Genet Dev. 2010 Dec;20(6):619-25. doi: 10.1016/j.gde.2010.09.002. Epub 2010 Oct 9. Review.

44.

Circadian gating of the cell cycle revealed in single cyanobacterial cells.

Yang Q, Pando BF, Dong G, Golden SS, van Oudenaarden A.

Science. 2010 Mar 19;327(5972):1522-6. doi: 10.1126/science.1181759.

45.

The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor.

Wood TL, Bridwell-Rabb J, Kim YI, Gao T, Chang YG, LiWang A, Barondeau DP, Golden SS.

Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5804-9. doi: 10.1073/pnas.0910141107. Epub 2010 Mar 15.

46.

Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus.

Dong G, Yang Q, Wang Q, Kim YI, Wood TL, Osteryoung KW, van Oudenaarden A, Golden SS.

Cell. 2010 Feb 19;140(4):529-39. doi: 10.1016/j.cell.2009.12.042.

47.

A novel allele of kaiA shortens the circadian period and strengthens interaction of oscillator components in the cyanobacterium Synechococcus elongatus PCC 7942.

Chen Y, Kim YI, Mackey SR, Holtman CK, Liwang A, Golden SS.

J Bacteriol. 2009 Jul;191(13):4392-400. doi: 10.1128/JB.00334-09. Epub 2009 Apr 24.

48.

Stability and lability of circadian period of gene expression in the cyanobacterium Synechococcus elongatus.

Clerico EM, Cassone VM, Golden SS.

Microbiology. 2009 Feb;155(Pt 2):635-41. doi: 10.1099/mic.0.022343-0.

49.

How a cyanobacterium tells time.

Dong G, Golden SS.

Curr Opin Microbiol. 2008 Dec;11(6):541-6. doi: 10.1016/j.mib.2008.10.003. Epub 2008 Nov 10. Review.

50.

The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria.

Kim YI, Dong G, Carruthers CW Jr, Golden SS, LiWang A.

Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12825-30. doi: 10.1073/pnas.0800526105. Epub 2008 Aug 26.

Supplemental Content

Loading ...
Support Center