Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 56

1.

Src and podoplanin forge a path to destruction.

Krishnan H, Miller WT, Blanco FJ, Goldberg GS.

Drug Discov Today. 2018 Aug 2. pii: S1359-6446(18)30189-2. doi: 10.1016/j.drudis.2018.07.009. [Epub ahead of print] Review.

PMID:
30077780
2.

Podoplanin: An emerging cancer biomarker and therapeutic target.

Krishnan H, Rayes J, Miyashita T, Ishii G, Retzbach EP, Sheehan SA, Takemoto A, Chang YW, Yoneda K, Asai J, Jensen L, Chalise L, Natsume A, Goldberg GS.

Cancer Sci. 2018 May;109(5):1292-1299. doi: 10.1111/cas.13580. Review.

3.

Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target.

Retzbach EP, Sheehan SA, Nevel EM, Batra A, Phi T, Nguyen ATP, Kato Y, Baredes S, Fatahzadeh M, Shienbaum AJ, Goldberg GS.

Oral Oncol. 2018 Mar;78:126-136. doi: 10.1016/j.oraloncology.2018.01.011. Epub 2018 Feb 20. Review.

PMID:
29496040
4.

Components in aqueous Hibiscus rosa-sinensis flower extract inhibit in vitro melanoma cell growth.

Goldberg KH, Yin AC, Mupparapu A, Retzbach EP, Goldberg GS, Yang CF.

J Tradit Complement Med. 2016 Feb 23;7(1):45-49. doi: 10.1016/j.jtcme.2016.01.005. eCollection 2017 Jan.

5.

AHNAK enables mammary carcinoma cells to produce extracellular vesicles that increase neighboring fibroblast cell motility.

Silva TA, Smuczek B, Valadão IC, Dzik LM, Iglesia RP, Cruz MC, Zelanis A, de Siqueira AS, Serrano SM, Goldberg GS, Jaeger RG, Freitas VM.

Oncotarget. 2016 Aug 2;7(31):49998-50016. doi: 10.18632/oncotarget.10307.

6.

Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

Goodson WH 3rd, Lowe L, Carpenter DO, Gilbertson M, Manaf Ali A, Lopez de Cerain Salsamendi A, Lasfar A, Carnero A, Azqueta A, Amedei A, Charles AK, Collins AR, Ward A, Salzberg AC, Colacci A, Olsen AK, Berg A, Barclay BJ, Zhou BP, Blanco-Aparicio C, Baglole CJ, Dong C, Mondello C, Hsu CW, Naus CC, Yedjou C, Curran CS, Laird DW, Koch DC, Carlin DJ, Felsher DW, Roy D, Brown DG, Ratovitski E, Ryan EP, Corsini E, Rojas E, Moon EY, Laconi E, Marongiu F, Al-Mulla F, Chiaradonna F, Darroudi F, Martin FL, Van Schooten FJ, Goldberg GS, Wagemaker G, Nangami GN, Calaf GM, Williams G, Wolf GT, Koppen G, Brunborg G, Lyerly HK, Krishnan H, Ab Hamid H, Yasaei H, Sone H, Kondoh H, Salem HK, Hsu HY, Park HH, Koturbash I, Miousse IR, Scovassi AI, Klaunig JE, Vondráček J, Raju J, Roman J, Wise JP Sr, Whitfield JR, Woodrick J, Christopher JA, Ochieng J, Martinez-Leal JF, Weisz J, Kravchenko J, Sun J, Prudhomme KR, Narayanan KB, Cohen-Solal KA, Moorwood K, Gonzalez L, Soucek L, Jian L, D'Abronzo LS, Lin LT, Li L, Gulliver L, McCawley LJ, Memeo L, Vermeulen L, Leyns L, Zhang L, Valverde M, Khatami M, Romano MF, Chapellier M, Williams MA, Wade M, Manjili MH, Lleonart ME, Xia M, Gonzalez MJ, Karamouzis MV, Kirsch-Volders M, Vaccari M, Kuemmerle NB, Singh N, Cruickshanks N, Kleinstreuer N, van Larebeke N, Ahmed N, Ogunkua O, Krishnakumar PK, Vadgama P, Marignani PA, Ghosh PM, Ostrosky-Wegman P, Thompson PA, Dent P, Heneberg P, Darbre P, Sing Leung P, Nangia-Makker P, Cheng QS, Robey RB, Al-Temaimi R, Roy R, Andrade-Vieira R, Sinha RK, Mehta R, Vento R, Di Fiore R, Ponce-Cusi R, Dornetshuber-Fleiss R, Nahta R, Castellino RC, Palorini R, Abd Hamid R, Langie SA, Eltom SE, Brooks SA, Ryeom S, Wise SS, Bay SN, Harris SA, Papagerakis S, Romano S, Pavanello S, Eriksson S, Forte S, Casey SC, Luanpitpong S, Lee TJ, Otsuki T, Chen T, Massfelder T, Sanderson T, Guarnieri T, Hultman T, Dormoy V, Odero-Marah V, Sabbisetti V, Maguer-Satta V, Rathmell WK, Engström W, Decker WK, Bisson WH, Rojanasakul Y, Luqmani Y, Chen Z, Hu Z.

Carcinogenesis. 2015 Jun;36 Suppl 1:S254-96. doi: 10.1093/carcin/bgv039. Review. Erratum in: Carcinogenesis. 2016 Mar;37(3):344.

7.

Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression.

Nahta R, Al-Mulla F, Al-Temaimi R, Amedei A, Andrade-Vieira R, Bay SN, Brown DG, Calaf GM, Castellino RC, Cohen-Solal KA, Colacci A, Cruickshanks N, Dent P, Di Fiore R, Forte S, Goldberg GS, Hamid RA, Krishnan H, Laird DW, Lasfar A, Marignani PA, Memeo L, Mondello C, Naus CC, Ponce-Cusi R, Raju J, Roy D, Roy R, Ryan EP, Salem HK, Scovassi AI, Singh N, Vaccari M, Vento R, Vondráček J, Wade M, Woodrick J, Bisson WH.

Carcinogenesis. 2015 Jun;36 Suppl 1:S2-18. doi: 10.1093/carcin/bgv028. Review.

8.

PKA and CDK5 can phosphorylate specific serines on the intracellular domain of podoplanin (PDPN) to inhibit cell motility.

Krishnan H, Retzbach EP, Ramirez MI, Liu T, Li H, Miller WT, Goldberg GS.

Exp Cell Res. 2015 Jul 1;335(1):115-22. doi: 10.1016/j.yexcr.2015.04.019. Epub 2015 May 7.

9.

Antibody and lectin target podoplanin to inhibit oral squamous carcinoma cell migration and viability by distinct mechanisms.

Ochoa-Alvarez JA, Krishnan H, Pastorino JG, Nevel E, Kephart D, Lee JJ, Retzbach EP, Shen Y, Fatahzadeh M, Baredes S, Kalyoussef E, Honma M, Adelson ME, Kaneko MK, Kato Y, Young MA, Deluca-Rapone L, Shienbaum AJ, Yin K, Jensen LD, Goldberg GS.

Oncotarget. 2015 Apr 20;6(11):9045-60.

10.

Podoplanin: a marker for reactive gliosis in gliomas and brain injury.

Kolar K, Freitas-Andrade M, Bechberger JF, Krishnan H, Goldberg GS, Naus CC, Sin WC.

J Neuropathol Exp Neurol. 2015 Jan;74(1):64-74. doi: 10.1097/NEN.0000000000000150.

PMID:
25470350
11.

Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis.

Mayan MD, Gago-Fuentes R, Carpintero-Fernandez P, Fernandez-Puente P, Filgueira-Fernandez P, Goyanes N, Valiunas V, Brink PR, Goldberg GS, Blanco FJ.

Ann Rheum Dis. 2015 Jan;74(1):275-84. doi: 10.1136/annrheumdis-2013-204244. Epub 2013 Nov 13. Erratum in: Ann Rheum Dis. 2015 Apr;74(4):792.

12.

Serines in the intracellular tail of podoplanin (PDPN) regulate cell motility.

Krishnan H, Ochoa-Alvarez JA, Shen Y, Nevel E, Lakshminarayanan M, Williams MC, Ramirez MI, Miller WT, Goldberg GS.

J Biol Chem. 2013 Apr 26;288(17):12215-21. doi: 10.1074/jbc.C112.446823. Epub 2013 Mar 25.

13.

Economic inequality and economic crisis: a challenge for social workers.

Goldberg GS.

Soc Work. 2012 Jul;57(3):211-24.

PMID:
23252313
14.

SRC points the way to biomarkers and chemotherapeutic targets.

Krishnan H, Miller WT, Goldberg GS.

Genes Cancer. 2012 May;3(5-6):426-35. doi: 10.1177/1947601912458583.

15.

Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration.

Ochoa-Alvarez JA, Krishnan H, Shen Y, Acharya NK, Han M, McNulty DE, Hasegawa H, Hyodo T, Senga T, Geng JG, Kosciuk M, Shin SS, Goydos JS, Temiakov D, Nagele RG, Goldberg GS.

PLoS One. 2012;7(7):e41845. doi: 10.1371/journal.pone.0041845. Epub 2012 Jul 23.

16.

Maternal diet, C-reactive protein, and the outcome of pregnancy.

Scholl TO, Chen X, Goldberg GS, Khusial PR, Stein TP.

J Am Coll Nutr. 2011 Aug;30(4):233-40.

PMID:
21917703
17.

Src activates Abl to augment Robo1 expression in order to promote tumor cell migration.

Khusial PR, Vadla B, Krishnan H, Ramlall TF, Shen Y, Ichikawa H, Geng JG, Goldberg GS.

Oncotarget. 2010 Jul;1(3):198-209.

18.

Cas utilizes Nck2 to activate Cdc42 and regulate cell polarization during cell migration in response to wound healing.

Funasaka K, Ito S, Hasegawa H, Goldberg GS, Hirooka Y, Goto H, Hamaguchi M, Senga T.

FEBS J. 2010 Sep;277(17):3502-13. doi: 10.1111/j.1742-4658.2010.07752.x. Epub 2010 Jul 19.

19.

SRC induces podoplanin expression to promote cell migration.

Shen Y, Chen CS, Ichikawa H, Goldberg GS.

J Biol Chem. 2010 Mar 26;285(13):9649-56. doi: 10.1074/jbc.M109.047696. Epub 2010 Feb 1.

20.

Regulation of miRNA expression by Src and contact normalization: effects on nonanchored cell growth and migration.

Li X, Shen Y, Ichikawa H, Antes T, Goldberg GS.

Oncogene. 2009 Dec 3;28(48):4272-83. doi: 10.1038/onc.2009.278. Epub 2009 Sep 21.

PMID:
19767772
21.

Src regulates the expression of Lin28: implications for cell growth, adhesion, and communication.

Khusial PR, Vadla B, Goldberg GS.

Cell Commun Adhes. 2009;15(5-6):407-9. doi: 10.1080/15419060902825980. No abstract available.

PMID:
19347759
22.

Coordinate suppression of Sdpr and Fhl1 expression in tumors of the breast, kidney, and prostate.

Li X, Jia Z, Shen Y, Ichikawa H, Jarvik J, Nagele RG, Goldberg GS.

Cancer Sci. 2008 Jul;99(7):1326-33. doi: 10.1111/j.1349-7006.2008.00816.x. Epub 2008 Apr 15.

23.

Phosphorylation of connexin43 induced by Src: regulation of gap junctional communication between transformed cells.

Pahujaa M, Anikin M, Goldberg GS.

Exp Cell Res. 2007 Dec 10;313(20):4083-90. Epub 2007 Sep 20. Review.

PMID:
17956757
24.

SRC utilizes Cas to block gap junctional communication mediated by connexin43.

Shen Y, Khusial PR, Li X, Ichikawa H, Moreno AP, Goldberg GS.

J Biol Chem. 2007 Jun 29;282(26):18914-21. Epub 2007 May 7.

25.

Full length and delta lactoferrin display differential cell localization dynamics, but do not act as tumor markers or significantly affect the expression of other genes.

Goldberg GS, Kunimoto T, Alexander DB, Suenaga K, Ishidate F, Miyamoto K, Ushijima T, Teng CT, Yokota J, Ohta T, Tsuda H.

Med Chem. 2005 Jan;1(1):57-64.

PMID:
16789886
26.

Individual Cas phosphorylation sites are dispensable for processive phosphorylation by Src and anchorage-independent cell growth.

Patwardhan P, Shen Y, Goldberg GS, Miller WT.

J Biol Chem. 2006 Jul 28;281(30):20689-97. Epub 2006 May 17.

27.

SRC uses Cas to suppress Fhl1 in order to promote nonanchored growth and migration of tumor cells.

Shen Y, Jia Z, Nagele RG, Ichikawa H, Goldberg GS.

Cancer Res. 2006 Feb 1;66(3):1543-52.

28.

Nontransformed cells can normalize gap junctional communication with transformed cells.

Valiunas V, Bechberger JF, Naus CC, Brink PR, Goldberg GS.

Biochem Biophys Res Commun. 2005 Jul 22;333(1):174-9.

PMID:
15936725
29.

Selective permeability of gap junction channels.

Goldberg GS, Valiunas V, Brink PR.

Biochim Biophys Acta. 2004 Mar 23;1662(1-2):96-101. Review.

30.

Normal cells control the growth of neighboring transformed cells independent of gap junctional communication and SRC activity.

Alexander DB, Ichikawa H, Bechberger JF, Valiunas V, Ohki M, Naus CC, Kunimoto T, Tsuda H, Miller WT, Goldberg GS.

Cancer Res. 2004 Feb 15;64(4):1347-58.

31.

Src phosphorylates Cas on tyrosine 253 to promote migration of transformed cells.

Goldberg GS, Alexander DB, Pellicena P, Zhang ZY, Tsuda H, Miller WT.

J Biol Chem. 2003 Nov 21;278(47):46533-40. Epub 2003 Sep 11.

32.

Transfer of biologically important molecules between cells through gap junction channels.

Alexander DB, Goldberg GS.

Curr Med Chem. 2003 Oct;10(19):2045-58. Review.

PMID:
12871102
33.

Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP.

Goldberg GS, Moreno AP, Lampe PD.

J Biol Chem. 2002 Sep 27;277(39):36725-30. Epub 2002 Jul 15.

34.
35.

Capture of transjunctional metabolites.

Goldberg GS, Lampe PD.

Methods Mol Biol. 2001;154:329-40. No abstract available.

PMID:
11218656
36.

Connexin43 suppresses MFG-E8 while inducing contact growth inhibition of glioma cells.

Goldberg GS, Bechberger JF, Tajima Y, Merritt M, Omori Y, Gawinowicz MA, Narayanan R, Tan Y, Sanai Y, Yamasaki H, Naus CC, Tsuda H, Nicholson BJ.

Cancer Res. 2000 Nov 1;60(21):6018-26.

37.

Selective transfer of endogenous metabolites through gap junctions composed of different connexins.

Goldberg GS, Lampe PD, Nicholson BJ.

Nat Cell Biol. 1999 Nov;1(7):457-9. No abstract available.

PMID:
10559992
38.

Direct isolation and analysis of endogenous transjunctional ADP from Cx43 transfected C6 glioma cells.

Goldberg GS, Lampe PD, Sheedy D, Stewart CC, Nicholson BJ, Naus CC.

Exp Cell Res. 1998 Feb 25;239(1):82-92.

PMID:
9511727
39.
40.

Jobs for all, economic justice, and the challenge of welfare "reform".

Goldberg GS.

J Public Health Policy. 1997;18(3):302-24. Review.

PMID:
9360347
41.

Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells.

Li H, Liu TF, Lazrak A, Peracchia C, Goldberg GS, Lampe PD, Johnson RG.

J Cell Biol. 1996 Aug;134(4):1019-30.

42.

Rat endometrial stromal cells express the gap junction genes connexins 26 and 43 and form functional gap junctions during in vitro decidualization.

Orlando-Mathur CE, Bechberger JF, Goldberg GS, Naus CC, Kidder GM, Kennedy TG.

Biol Reprod. 1996 Apr;54(4):905-13.

PMID:
8924512
43.

Evidence that disruption of connexon particle arrangements in gap junction plaques is associated with inhibition of gap junctional communication by a glycyrrhetinic acid derivative.

Goldberg GS, Moreno AP, Bechberger JF, Hearn SS, Shivers RR, MacPhee DJ, Zhang YC, Naus CC.

Exp Cell Res. 1996 Jan 10;222(1):48-53.

PMID:
8549672
44.

A pre-loading method of evaluating gap junctional communication by fluorescent dye transfer.

Goldberg GS, Bechberger JF, Naus CC.

Biotechniques. 1995 Mar;18(3):490-7. Erratum in: Biotechniques 1995 Aug;19(2):212.

PMID:
7779401
45.

Retinoids, gap junctional communication and suppression of epithelial tumors.

Goldberg GS, Bertram JS.

In Vivo. 1994 Nov-Dec;8(5):745-54. Review.

PMID:
7727722
46.
47.
48.

Microbiology of human immunodeficiency virus anorectal disease.

Goldberg GS, Orkin BA, Smith LE.

Dis Colon Rectum. 1994 May;37(5):439-43.

PMID:
8181404
50.

Dynamics of connexin43 phosphorylation in pp60v-src-transformed cells.

Goldberg GS, Lau AF.

Biochem J. 1993 Nov 1;295 ( Pt 3):735-42.

Supplemental Content

Loading ...
Support Center