Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 56

1.

Genome-wide analysis of Fusarium verticillioides reveals inter-kingdom contribution of horizontal gene transfer to the expansion of metabolism.

Gao S, Gold SE, Wisecaver JH, Zhang Y, Guo L, Ma LJ, Rokas A, Glenn AE.

Fungal Genet Biol. 2019 Jul;128:60-73. doi: 10.1016/j.fgb.2019.04.002. Epub 2019 Apr 3.

PMID:
30953838
2.

Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent.

Rath M, Mitchell TR, Gold SE.

Microbiol Res. 2018 Mar;208:76-84. doi: 10.1016/j.micres.2017.12.014. Epub 2018 Jan 3.

3.

Fungal Lactamases: Their Occurrence and Function.

Gao M, Glenn AE, Blacutt AA, Gold SE.

Front Microbiol. 2017 Sep 19;8:1775. doi: 10.3389/fmicb.2017.01775. eCollection 2017. Review.

4.

Fusarium verticillioides: Advancements in Understanding the Toxicity, Virulence, and Niche Adaptations of a Model Mycotoxigenic Pathogen of Maize.

Blacutt AA, Gold SE, Voss KA, Gao M, Glenn AE.

Phytopathology. 2018 Mar;108(3):312-326. doi: 10.1094/PHYTO-06-17-0203-RVW. Epub 2018 Jan 2. Review.

PMID:
28971734
5.

Characterization of two catalase-peroxidase-encoding genes in Fusarium verticillioides reveals differential responses to in vitro versus in planta oxidative challenges.

Gao S, Gold SE, Glenn AE.

Mol Plant Pathol. 2018 May;19(5):1127-1139. doi: 10.1111/mpp.12591. Epub 2017 Oct 24.

PMID:
28802018
6.

Rapid Deletion Production in Fungi via Agrobacterium Mediated Transformation of OSCAR Deletion Constructs.

Gold SE, Paz Z, García-Pedrajas MD, Glenn AE.

J Vis Exp. 2017 Jun 12;(124). doi: 10.3791/55239.

7.

Bacillus mojavensis RRC101 Lipopeptides Provoke Physiological and Metabolic Changes During Antagonism Against Fusarium verticilliodes.

Blacutt AA, Mitchell TR, Bacon CW, Gold SE.

Mol Plant Microbe Interact. 2016 Sep;29(9):713-23.

PMID:
29775248
8.

Identification of genes differentially expressed during early interactions between the stem rot fungus (Sclerotium rolfsii) and peanut (Arachis hypogaea) cultivars with increasing disease resistance levels.

Jogi A, Kerry JW, Brenneman TB, Leebens-Mack JH, Gold SE.

Microbiol Res. 2016 Mar;184:1-12. doi: 10.1016/j.micres.2015.11.003. Epub 2015 Dec 17.

9.

Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species.

Glenn AE, Davis CB, Gao M, Gold SE, Mitchell TR, Proctor RH, Stewart JE, Snook ME.

PLoS One. 2016 Jan 25;11(1):e0147486. doi: 10.1371/journal.pone.0147486. eCollection 2016.

10.

Effects of Hydrogen Peroxide on Different Toxigenic and Atoxigenic Isolates of Aspergillus flavus.

Fountain JC, Scully BT, Chen ZY, Gold SE, Glenn AE, Abbas HK, Lee RD, Kemerait RC, Guo B.

Toxins (Basel). 2015 Aug 5;7(8):2985-99. doi: 10.3390/toxins7082985.

11.

Whole-Genome Shotgun Sequence of Bacillus mojavensis Strain RRC101, an Endophytic Bacterium Antagonistic to the Mycotoxigenic Endophytic Fungus Fusarium verticillioides.

Gold SE, Blacutt AA, Meinersmann RJ, Bacon CW.

Genome Announc. 2014 Oct 30;2(5). pii: e01090-14. doi: 10.1128/genomeA.01090-14.

12.

Transcriptome Analysis of a Ustilago maydis ust1 Deletion Mutant Uncovers Involvement of Laccase and Polyketide Synthase Genes in Spore Development.

Islamovic E, García-Pedrajas MD, Chacko N, Andrews DL, Covert SF, Gold SE.

Mol Plant Microbe Interact. 2015 Jan;28(1):42-54. doi: 10.1094/MPMI-05-14-0133-R.

13.

Conserved and Distinct Functions of the “Stunted” (StuA)-Homolog Ust1 During Cell Differentiation in the Corn Smut Fungus Ustilago maydis.

Baeza-Montañez L, Gold SE, Espeso EA, García-Pedrajas MD.

Mol Plant Microbe Interact. 2015 Jan;28(1):86-102. doi: 10.1094/MPMI-07-14-0215-R.

14.
15.

Two members of the Ustilago maydis velvet family influence teliospore development and virulence on maize seedlings.

Karakkat BB, Gold SE, Covert SF.

Fungal Genet Biol. 2013 Dec;61:111-9. doi: 10.1016/j.fgb.2013.09.002. Epub 2013 Sep 21.

PMID:
24064149
16.

Assessment of autophagosome formation by transmission electron microscopy.

Nadal M, Gold SE.

Methods Mol Biol. 2012;835:481-9. doi: 10.1007/978-1-61779-501-5_29.

PMID:
22183672
17.

Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens.

Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BP, Chen Z, Henrissat B, Lee YH, Park J, Garcia-Pedrajas MD, Barbara DJ, Anchieta A, de Jonge R, Santhanam P, Maruthachalam K, Atallah Z, Amyotte SG, Paz Z, Inderbitzin P, Hayes RJ, Heiman DI, Young S, Zeng Q, Engels R, Galagan J, Cuomo CA, Dobinson KF, Ma LJ.

PLoS Pathog. 2011 Jul;7(7):e1002137. doi: 10.1371/journal.ppat.1002137. Epub 2011 Jul 28.

18.

One step construction of Agrobacterium-Recombination-ready-plasmids (OSCAR), an efficient and robust tool for ATMT based gene deletion construction in fungi.

Paz Z, García-Pedrajas MD, Andrews DL, Klosterman SJ, Baeza-Montañez L, Gold SE.

Fungal Genet Biol. 2011 Jul;48(7):677-84. doi: 10.1016/j.fgb.2011.02.003. Epub 2011 Mar 6.

PMID:
21362493
19.

The snf1 gene of Ustilago maydis acts as a dual regulator of cell wall degrading enzymes.

Nadal M, Garcia-Pedrajas MD, Gold SE.

Phytopathology. 2010 Dec;100(12):1364-72. doi: 10.1094/PHYTO-01-10-0011.

20.

The autophagy genes ATG8 and ATG1 affect morphogenesis and pathogenicity in Ustilago maydis.

Nadal M, Gold SE.

Mol Plant Pathol. 2010 Jul;11(4):463-78. doi: 10.1111/j.1364-3703.2010.00620.x.

PMID:
20618705
21.

DelsGate: a robust and rapid method for gene deletion.

García-Pedrajas MD, Nadal M, Denny T, Baeza-Montañez L, Paz Z, Gold SE.

Methods Mol Biol. 2010;638:55-76. doi: 10.1007/978-1-60761-611-5_5.

PMID:
20238261
22.

Regulation of Ustilago maydis dimorphism, sporulation, and pathogenic development by a transcription factor with a highly conserved APSES domain.

García-Pedrajas MD, Baeza-Montañez L, Gold SE.

Mol Plant Microbe Interact. 2010 Feb;23(2):211-22. doi: 10.1094/MPMI-23-2-0211.

23.

Calcineurin is an antagonist to PKA protein phosphorylation required for postmating filamentation and virulence, while PP2A is required for viability in Ustilago maydis.

Egan JD, García-Pedrajas MD, Andrews DL, Gold SE.

Mol Plant Microbe Interact. 2009 Oct;22(10):1293-301. doi: 10.1094/MPMI-22-10-1293.

24.

Ustilago maydis Rho1 and 14-3-3 homologues participate in pathways controlling cell separation and cell polarity.

Pham CD, Yu Z, Sandrock B, Bölker M, Gold SE, Perlin MH.

Eukaryot Cell. 2009 Jul;8(7):977-89. doi: 10.1128/EC.00009-09. Epub 2009 May 1.

25.

Phylogeography and Genotype-Symptom Associations in Early and Late Season Infections of Canola by Sclerotinia sclerotiorum.

Phillips DV, Carbone I, Gold SE, Kohn LM.

Phytopathology. 2002 Jul;92(7):785-93. doi: 10.1094/PHYTO.2002.92.7.785.

26.

Sending mixed signals: redundancy vs. uniqueness of signaling components in the plant pathogen, Ustilago maydis.

García-Pedrajas MD, Nadal M, Bölker M, Gold SE, Perlin MH.

Fungal Genet Biol. 2008 Aug;45 Suppl 1:S22-30. doi: 10.1016/j.fgb.2008.04.007. Epub 2008 May 23. Review.

PMID:
18502157
27.

Dimorphism in fungal plant pathogens.

Nadal M, García-Pedrajas MD, Gold SE.

FEMS Microbiol Lett. 2008 Jul;284(2):127-34. doi: 10.1111/j.1574-6968.2008.01173.x. Epub 2008 May 12. Review.

28.

DelsGate, a robust and rapid gene deletion construction method.

García-Pedrajas MD, Nadal M, Kapa LB, Perlin MH, Andrews DL, Gold SE.

Fungal Genet Biol. 2008 Apr;45(4):379-88. doi: 10.1016/j.fgb.2007.11.001. Epub 2007 Nov 19.

PMID:
18248826
29.
30.

Sex in broad daylight: turning a new leaf-fungal style.

Nadal M, Gold SE.

Cell Host Microbe. 2007 Jun 14;1(4):246-8.

31.

Genetics of morphogenesis and pathogenic development of Ustilago maydis.

Klosterman SJ, Perlin MH, Garcia-Pedrajas M, Covert SF, Gold SE.

Adv Genet. 2007;57:1-47. Review.

PMID:
17352901
32.

Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis.

Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Müller O, Perlin MH, Wösten HA, de Vries R, Ruiz-Herrera J, Reynaga-Peña CG, Snetselaar K, McCann M, Pérez-Martín J, Feldbrügge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, González-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Münch K, Rössel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho EC, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier PH, Häuser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schlüter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Güldener U, Münsterkötter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW.

Nature. 2006 Nov 2;444(7115):97-101.

PMID:
17080091
33.

Plant pathogen forensics: capabilities, needs, and recommendations.

Fletcher J, Bender C, Budowle B, Cobb WT, Gold SE, Ishimaru CA, Luster D, Melcher U, Murch R, Scherm H, Seem RC, Sherwood JL, Sobral BW, Tolin SA.

Microbiol Mol Biol Rev. 2006 Jun;70(2):450-71. Review.

34.

Kernel knowledge: smut of corn.

García-Pedrajas MD, Gold SE.

Adv Appl Microbiol. 2004;56:263-90. Review. No abstract available.

PMID:
15566982
35.

MAP kinase and cAMP signaling pathways modulate the pH-induced yeast-to-mycelium dimorphic transition in the corn smut fungus Ustilago maydis.

Martínez-Espinoza AD, Ruiz-Herrera J, León-Ramírez CG, Gold SE.

Curr Microbiol. 2004 Oct;49(4):274-81.

PMID:
15386116
36.

Fungal dimorphism regulated gene expression in Ustilago maydis: II. Filament down-regulated genes.

García-Pedrajas MD, Gold SE.

Mol Plant Pathol. 2004 Jul 1;5(4):295-307. doi: 10.1111/j.1364-3703.2004.00233.x.

PMID:
20565597
37.

Fungal dimorphism regulated gene expression in Ustilago maydis: I. Filament up-regulated genes.

Andrews DL, García-Pedrajas MD, Gold SE.

Mol Plant Pathol. 2004 Jul 1;5(4):281-93. doi: 10.1111/j.1364-3703.2004.00232.x.

PMID:
20565596
38.

An ste20 homologue in Ustilago maydis plays a role in mating and pathogenicity.

Smith DG, Garcia-Pedrajas MD, Hong W, Yu Z, Gold SE, Perlin MH.

Eukaryot Cell. 2004 Feb;3(1):180-9.

39.

Isolation and characterization from pathogenic fungi of genes encoding ammonium permeases and their roles in dimorphism.

Smith DG, Garcia-Pedrajas MD, Gold SE, Perlin MH.

Mol Microbiol. 2003 Oct;50(1):259-75.

40.

Fdb1 and Fdb2, Fusarium verticillioides loci necessary for detoxification of preformed antimicrobials from corn.

Glenn AE, Gold SE, Bacon CW.

Mol Plant Microbe Interact. 2002 Feb;15(2):91-101.

41.

The Ustilaginales as plant pests and model systems.

Martínez-Espinoza AD, García-Pedrajas MD, Gold SE.

Fungal Genet Biol. 2002 Feb;35(1):1-20. Review.

PMID:
11860261
42.

Integration of the gene for carboxin resistance does not impact the Ustilago maydis-maize interaction.

Topp CN, Ruiz-Herrera J, Martínez-Espinoza AD, Gold SE.

Curr Microbiol. 2002 Jan;44(1):67-70.

PMID:
11727044
43.

New (and used) approaches to the study of fungal pathogenicity.

Gold SE, García-Pedrajas MD, Martínez-Espinoza AD.

Annu Rev Phytopathol. 2001;39:337-65. Review.

PMID:
11701869
45.

MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes.

Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF.

Plant J. 2000 Nov;24(4):457-66. Erratum in: Plant J 2001 Mar;25(5):593.

46.

The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth.

Andrews DL, Egan JD, Mayorga ME, Gold SE.

Mol Plant Microbe Interact. 2000 Jul;13(7):781-6.

47.

Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis.

Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G.

Science. 2000 Jun 2;288(5471):1613-6.

48.

An ancestral MADS-box gene duplication occurred before the divergence of plants and animals.

Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, Ribas de Pouplana L, Martínez-Castilla L, Yanofsky MF.

Proc Natl Acad Sci U S A. 2000 May 9;97(10):5328-33.

49.
50.

Supplemental Content

Support Center