Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 31

1.

Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.

Smith AS, Nowak RB, Zhou S, Giannetto M, Gokhin DS, Papoin J, Ghiran IC, Blanc L, Wan J, Fowler VM.

Proc Natl Acad Sci U S A. 2018 May 8;115(19):E4377-E4385. doi: 10.1073/pnas.1718285115. Epub 2018 Apr 2. Erratum in: Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6385.

PMID:
29610350
2.

Tropomodulin 1 controls erythroblast enucleation via regulation of F-actin in the enucleosome.

Nowak RB, Papoin J, Gokhin DS, Casu C, Rivella S, Lipton JM, Blanc L, Fowler VM.

Blood. 2017 Aug 31;130(9):1144-1155. doi: 10.1182/blood-2017-05-787051. Epub 2017 Jul 20.

3.

Stabilization of F-actin by tropomyosin isoforms regulates the morphology and mechanical behavior of red blood cells.

Sui Z, Gokhin DS, Nowak RB, Guo X, An X, Fowler VM.

Mol Biol Cell. 2017 Sep 15;28(19):2531-2542. doi: 10.1091/mbc.E16-10-0699. Epub 2017 Jul 18.

4.

Software-based measurement of thin filament lengths: an open-source GUI for Distributed Deconvolution analysis of fluorescence images.

Gokhin DS, Fowler VM.

J Microsc. 2017 Jan;265(1):11-20. doi: 10.1111/jmi.12456. Epub 2016 Sep 19.

5.
6.

Feisty filaments: actin dynamics in the red blood cell membrane skeleton.

Gokhin DS, Fowler VM.

Curr Opin Hematol. 2016 May;23(3):206-14. doi: 10.1097/MOH.0000000000000227. Review.

7.

Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle.

Gokhin DS, Ochala J, Domenighetti AA, Fowler VM.

Development. 2015 Dec 15;142(24):4351-62. doi: 10.1242/dev.129171. Epub 2015 Nov 19.

8.

Dynamic actin filaments control the mechanical behavior of the human red blood cell membrane.

Gokhin DS, Nowak RB, Khoory JA, Piedra Ade L, Ghiran IC, Fowler VM.

Mol Biol Cell. 2015 May 1;26(9):1699-710. doi: 10.1091/mbc.E14-12-1583. Epub 2015 Feb 25.

9.

Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy.

Yuen M, Sandaradura SA, Dowling JJ, Kostyukova AS, Moroz N, Quinlan KG, Lehtokari VL, Ravenscroft G, Todd EJ, Ceyhan-Birsoy O, Gokhin DS, Maluenda J, Lek M, Nolent F, Pappas CT, Novak SM, D'Amico A, Malfatti E, Thomas BP, Gabriel SB, Gupta N, Daly MJ, Ilkovski B, Houweling PJ, Davidson AE, Swanson LC, Brownstein CA, Gupta VA, Medne L, Shannon P, Martin N, Bick DP, Flisberg A, Holmberg E, Van den Bergh P, Lapunzina P, Waddell LB, Sloboda DD, Bertini E, Chitayat D, Telfer WR, Laquerrière A, Gregorio CC, Ottenheijm CA, Bönnemann CG, Pelin K, Beggs AH, Hayashi YK, Romero NB, Laing NG, Nishino I, Wallgren-Pettersson C, Melki J, Fowler VM, MacArthur DG, North KN, Clarke NF.

J Clin Invest. 2015 Jan;125(1):456-7. doi: 10.1172/JCI80057. Epub 2015 Jan 2. No abstract available.

10.

Alterations in thin filament length during postnatal skeletal muscle development and aging in mice.

Gokhin DS, Dubuc EA, Lian KQ, Peters LL, Fowler VM.

Front Physiol. 2014 Sep 29;5:375. doi: 10.3389/fphys.2014.00375. eCollection 2014.

11.

Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy.

Yuen M, Sandaradura SA, Dowling JJ, Kostyukova AS, Moroz N, Quinlan KG, Lehtokari VL, Ravenscroft G, Todd EJ, Ceyhan-Birsoy O, Gokhin DS, Maluenda J, Lek M, Nolent F, Pappas CT, Novak SM, D'Amico A, Malfatti E, Thomas BP, Gabriel SB, Gupta N, Daly MJ, Ilkovski B, Houweling PJ, Davidson AE, Swanson LC, Brownstein CA, Gupta VA, Medne L, Shannon P, Martin N, Bick DP, Flisberg A, Holmberg E, Van den Bergh P, Lapunzina P, Waddell LB, Sloboda DD, Bertini E, Chitayat D, Telfer WR, Laquerrière A, Gregorio CC, Ottenheijm CA, Bönnemann CG, Pelin K, Beggs AH, Hayashi YK, Romero NB, Laing NG, Nishino I, Wallgren-Pettersson C, Melki J, Fowler VM, MacArthur DG, North KN, Clarke NF.

J Clin Invest. 2014 Nov;124(11):4693-708. doi: 10.1172/JCI75199. Epub 2014 Sep 24. Erratum in: J Clin Invest. 2015 Jan;125(1):456-7.

12.

Functional effects of mutations in the tropomyosin-binding sites of tropomodulin1 and tropomodulin3.

Lewis RA, Yamashiro S, Gokhin DS, Fowler VM.

Cytoskeleton (Hoboken). 2014 Jul;71(7):395-411. doi: 10.1002/cm.21179. Epub 2014 Jul 2.

13.

Differential actin-regulatory activities of Tropomodulin1 and Tropomodulin3 with diverse tropomyosin and actin isoforms.

Yamashiro S, Gokhin DS, Sui Z, Bergeron SE, Rubenstein PA, Fowler VM.

J Biol Chem. 2014 Apr 25;289(17):11616-29. doi: 10.1074/jbc.M114.555128. Epub 2014 Mar 18.

14.

Tropomyosin is required for cardiac morphogenesis, myofibril assembly, and formation of adherens junctions in the developing mouse embryo.

McKeown CR, Nowak RB, Gokhin DS, Fowler VM.

Dev Dyn. 2014 Jun;243(6):800-17. doi: 10.1002/dvdy.24115. Epub 2014 Feb 24.

15.

Calpain-mediated proteolysis of tropomodulin isoforms leads to thin filament elongation in dystrophic skeletal muscle.

Gokhin DS, Tierney MT, Sui Z, Sacco A, Fowler VM.

Mol Biol Cell. 2014 Mar;25(6):852-65. doi: 10.1091/mbc.E13-10-0608. Epub 2014 Jan 15.

16.

Pointed-end capping by tropomodulin modulates actomyosin crossbridge formation in skeletal muscle fibers.

Ochala J, Gokhin DS, Iwamoto H, Fowler VM.

FASEB J. 2014 Jan;28(1):408-15. doi: 10.1096/fj.13-239640. Epub 2013 Sep 26.

17.

The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse.

Yamamoto DL, Vitiello C, Zhang J, Gokhin DS, Castaldi A, Coulis G, Piaser F, Filomena MC, Eggenhuizen PJ, Kunderfranco P, Camerini S, Takano K, Endo T, Crescenzi M, Luther PK, Lieber RL, Chen J, Bang ML.

J Cell Sci. 2013 Dec 1;126(Pt 23):5477-89. doi: 10.1242/jcs.137026. Epub 2013 Sep 17.

18.

Loss of FHL1 induces an age-dependent skeletal muscle myopathy associated with myofibrillar and intermyofibrillar disorganization in mice.

Domenighetti AA, Chu PH, Wu T, Sheikh F, Gokhin DS, Guo LT, Cui Z, Peter AK, Christodoulou DC, Parfenov MG, Gorham JM, Li DY, Banerjee I, Lai X, Witzmann FA, Seidman CE, Seidman JG, Gomes AV, Shelton GD, Lieber RL, Chen J.

Hum Mol Genet. 2014 Jan 1;23(1):209-25. doi: 10.1093/hmg/ddt412. Epub 2013 Aug 23.

19.

A two-segment model for thin filament architecture in skeletal muscle.

Gokhin DS, Fowler VM.

Nat Rev Mol Cell Biol. 2013 Feb;14(2):113-9. doi: 10.1038/nrm3510. Epub 2013 Jan 9. Review.

20.

Tmod1 and CP49 synergize to control the fiber cell geometry, transparency, and mechanical stiffness of the mouse lens.

Gokhin DS, Nowak RB, Kim NE, Arnett EE, Chen AC, Sah RL, Clark JI, Fowler VM.

PLoS One. 2012;7(11):e48734. doi: 10.1371/journal.pone.0048734. Epub 2012 Nov 7.

21.

Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms.

Ochala J, Gokhin DS, Pénisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM.

Hum Mol Genet. 2012 Oct 15;21(20):4473-85. Epub 2012 Jul 13.

22.

Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types.

Yamashiro S, Gokhin DS, Kimura S, Nowak RB, Fowler VM.

Cytoskeleton (Hoboken). 2012 Jun;69(6):337-70. doi: 10.1002/cm.21031. Epub 2012 May 4. Review.

23.

Thin-filament length correlates with fiber type in human skeletal muscle.

Gokhin DS, Kim NE, Lewis SA, Hoenecke HR, D'Lima DD, Fowler VM.

Am J Physiol Cell Physiol. 2012 Feb 1;302(3):C555-65. doi: 10.1152/ajpcell.00299.2011. Epub 2011 Nov 9.

24.

The sarcoplasmic reticulum: Actin and tropomodulin hit the links.

Gokhin DS, Fowler VM.

Bioarchitecture. 2011 Jul;1(4):175-179. Epub 2011 Jul 1.

25.

Tropomodulin capping of actin filaments in striated muscle development and physiology.

Gokhin DS, Fowler VM.

J Biomed Biotechnol. 2011;2011:103069. doi: 10.1155/2011/103069. Epub 2011 Oct 17. Review.

26.

Cytoplasmic gamma-actin and tropomodulin isoforms link to the sarcoplasmic reticulum in skeletal muscle fibers.

Gokhin DS, Fowler VM.

J Cell Biol. 2011 Jul 11;194(1):105-20. doi: 10.1083/jcb.201011128. Epub 2011 Jul 4.

27.

Tropomodulin isoforms regulate thin filament pointed-end capping and skeletal muscle physiology.

Gokhin DS, Lewis RA, McKeown CR, Nowak RB, Kim NE, Littlefield RS, Lieber RL, Fowler VM.

J Cell Biol. 2010 Apr 5;189(1):95-109. doi: 10.1083/jcb.201001125.

28.

Reduced thin filament length in nebulin-knockout skeletal muscle alters isometric contractile properties.

Gokhin DS, Bang ML, Zhang J, Chen J, Lieber RL.

Am J Physiol Cell Physiol. 2009 May;296(5):C1123-32. doi: 10.1152/ajpcell.00503.2008. Epub 2009 Mar 18.

29.

Syncoilin is required for generating maximum isometric stress in skeletal muscle but dispensable for muscle cytoarchitecture.

Zhang J, Bang ML, Gokhin DS, Lu Y, Cui L, Li X, Gu Y, Dalton ND, Scimia MC, Peterson KL, Lieber RL, Chen J.

Am J Physiol Cell Physiol. 2008 May;294(5):C1175-82. doi: 10.1152/ajpcell.00049.2008. Epub 2008 Mar 26.

30.

Quantitative analysis of neonatal skeletal muscle functional improvement in the mouse.

Gokhin DS, Ward SR, Bremner SN, Lieber RL.

J Exp Biol. 2008 Mar;211(Pt 6):837-43. doi: 10.1242/jeb.014340.

31.

A novel rodent neck pain model of facet-mediated behavioral hypersensitivity: implications for persistent pain and whiplash injury.

Lee KE, Thinnes JH, Gokhin DS, Winkelstein BA.

J Neurosci Methods. 2004 Aug 30;137(2):151-9.

PMID:
15262055

Supplemental Content

Loading ...
Support Center