Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 181

1.

ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops.

Orozco-Mosqueda MDC, Glick BR, Santoyo G.

Microbiol Res. 2020 Feb 15;235:126439. doi: 10.1016/j.micres.2020.126439. [Epub ahead of print] Review.

PMID:
32097862
2.

The extreme plant-growth-promoting properties of Pantoea phytobeneficialis MSR2 revealed by functional and genomic analysis.

Nascimento FX, Hernandez AG, Glick BR, Rossi MJ.

Environ Microbiol. 2020 Feb 19. doi: 10.1111/1462-2920.14946. [Epub ahead of print]

PMID:
32077227
3.

Rhizobacteria producing ACC deaminase mitigate water-stress response in finger millet (Eleusine coracana (L.) Gaertn.).

Chandra D, Srivastava R, Glick BR, Sharma AK.

3 Biotech. 2020 Feb;10(2):65. doi: 10.1007/s13205-019-2046-4. Epub 2020 Jan 24.

PMID:
32030334
4.

Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest.

Nascimento FX, Hernández AG, Glick BR, Rossi MJ.

Biotechnol Rep (Amst). 2019 Dec 4;25:e00406. doi: 10.1016/j.btre.2019.e00406. eCollection 2020 Mar.

5.

Mediterranean Native Leguminous Plants: A Reservoir of Endophytic Bacteria with Potential to Enhance Chickpea Growth under Stress Conditions.

Brígido C, Menéndez E, Paço A, Glick BR, Belo A, Félix MR, Oliveira S, Carvalho M.

Microorganisms. 2019 Sep 25;7(10). pii: E392. doi: 10.3390/microorganisms7100392.

6.

Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal-contaminated soils.

Kong Z, Wu Z, Glick BR, He S, Huang C, Wu L.

Ecotoxicol Environ Saf. 2019 Nov 15;183:109504. doi: 10.1016/j.ecoenv.2019.109504. Epub 2019 Aug 14.

PMID:
31421537
7.

The Production of ACC Deaminase and Trehalose by the Plant Growth Promoting Bacterium Pseudomonas sp. UW4 Synergistically Protect Tomato Plants Against Salt Stress.

Orozco-Mosqueda MDC, Duan J, DiBernardo M, Zetter E, Campos-García J, Glick BR, Santoyo G.

Front Microbiol. 2019 Jun 19;10:1392. doi: 10.3389/fmicb.2019.01392. eCollection 2019.

8.

ACC deaminase plays a major role in Pseudomonas fluorescens YsS6 ability to promote the nodulation of Alpha- and Betaproteobacteria rhizobial strains.

Nascimento FX, Tavares MJ, Franck J, Ali S, Glick BR, Rossi MJ.

Arch Microbiol. 2019 Aug;201(6):817-822. doi: 10.1007/s00203-019-01649-5. Epub 2019 Mar 15.

PMID:
30877322
9.

Diversity and Functionality of Culturable Endophytic Bacterial Communities in Chickpea Plants.

Brígido C, Singh S, Menéndez E, Tavares MJ, Glick BR, Félix MDR, Oliveira S, Carvalho M.

Plants (Basel). 2019 Feb 14;8(2). pii: E42. doi: 10.3390/plants8020042.

10.

The modulation of leguminous plant ethylene levels by symbiotic rhizobia played a role in the evolution of the nodulation process.

Nascimento FX, Tavares MJ, Rossi MJ, Glick BR.

Heliyon. 2018 Dec 20;4(12):e01068. doi: 10.1016/j.heliyon.2018.e01068. eCollection 2018 Dec.

11.

Plant health: feedback effect of root exudates-rhizobiome interactions.

Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO.

Appl Microbiol Biotechnol. 2019 Feb;103(3):1155-1166. doi: 10.1007/s00253-018-9556-6. Epub 2018 Dec 20. Review.

12.

Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies.

Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z.

Biotechnol Adv. 2019 Jan - Feb;37(1):177-192. doi: 10.1016/j.biotechadv.2018.11.013. Epub 2018 Nov 27. Review.

14.

Near-Complete Genome Sequence of Pseudomonas palleroniana MAB3, a Beneficial 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Bacterium Able To Promote the Growth of Mushrooms and Plants.

Urón P, Giachini AJ, Glick BR, Rossi MJ, Nascimento FX.

Genome Announc. 2018 Apr 19;6(16). pii: e00242-18. doi: 10.1128/genomeA.00242-18.

15.

Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms.

Orozco-Mosqueda MDC, Rocha-Granados MDC, Glick BR, Santoyo G.

Microbiol Res. 2018 Mar;208:25-31. doi: 10.1016/j.micres.2018.01.005. Epub 2018 Jan 31. Review.

16.

Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant-Bacterial Interactions.

Nascimento FX, Rossi MJ, Glick BR.

Front Plant Sci. 2018 Feb 22;9:114. doi: 10.3389/fpls.2018.00114. eCollection 2018. Review.

17.

Improvement of Cupriavidus taiwanensis Nodulation and Plant Growth Promoting Abilities by the Expression of an Exogenous ACC Deaminase Gene.

Nascimento FX, Tavares MJ, Glick BR, Rossi MJ.

Curr Microbiol. 2018 Aug;75(8):961-965. doi: 10.1007/s00284-018-1474-4. Epub 2018 Mar 7.

PMID:
29516180
18.

Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4.

Duca DR, Rose DR, Glick BR.

Antonie Van Leeuwenhoek. 2018 Sep;111(9):1645-1660. doi: 10.1007/s10482-018-1051-7. Epub 2018 Feb 28.

PMID:
29492769
19.

The expression of an exogenous ACC deaminase by the endophyte Serratia grimesii BXF1 promotes the early nodulation and growth of common bean.

Tavares MJ, Nascimento FX, Glick BR, Rossi MJ.

Lett Appl Microbiol. 2018 Mar;66(3):252-259. doi: 10.1111/lam.12847. Epub 2018 Feb 2.

PMID:
29327464
20.

Mechanisms of action of plant growth promoting bacteria.

Olanrewaju OS, Glick BR, Babalola OO.

World J Microbiol Biotechnol. 2017 Oct 6;33(11):197. doi: 10.1007/s11274-017-2364-9. Review.

21.

The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation.

Kong Z, Glick BR.

Adv Microb Physiol. 2017;71:97-132. doi: 10.1016/bs.ampbs.2017.04.001. Epub 2017 May 25. Review.

PMID:
28760324
22.

Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture.

Alori ET, Glick BR, Babalola OO.

Front Microbiol. 2017 Jun 2;8:971. doi: 10.3389/fmicb.2017.00971. eCollection 2017. Review.

23.

Tomato ethylene sensitivity determines interaction with plant growth-promoting bacteria.

Ibort P, Molina S, Núñez R, Zamarreño ÁM, García-Mina JM, Ruiz-Lozano JM, Orozco-Mosqueda MDC, Glick BR, Aroca R.

Ann Bot. 2017 Jul 1;120(1):101-122. doi: 10.1093/aob/mcx052.

24.

The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress.

Yaish MW, Al-Harrasi I, Alansari AS, Al-Yahyai R, Glick BR.

Int Microbiol. 2016 Sep;19(3):143-155. doi: 10.2436/20.1501.01.272.

25.
26.

Survey of Plant Growth-Promoting Mechanisms in Native Portuguese Chickpea Mesorhizobium Isolates.

Brígido C, Glick BR, Oliveira S.

Microb Ecol. 2017 May;73(4):900-915. doi: 10.1007/s00248-016-0891-9. Epub 2016 Dec 1.

PMID:
27904921
27.

Impact of Soil Salinity on the Structure of the Bacterial Endophytic Community Identified from the Roots of Caliph Medic (Medicago truncatula).

Yaish MW, Al-Lawati A, Jana GA, Vishwas Patankar H, Glick BR.

PLoS One. 2016 Jul 8;11(7):e0159007. doi: 10.1371/journal.pone.0159007. eCollection 2016.

28.

Plant growth-promoting bacterial endophytes.

Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda Mdel C, Glick BR.

Microbiol Res. 2016 Feb;183:92-9. doi: 10.1016/j.micres.2015.11.008. Epub 2015 Nov 25. Review.

29.

Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress.

Kong Z, Mohamad OA, Deng Z, Liu X, Glick BR, Wei G.

Environ Sci Pollut Res Int. 2015 Aug;22(16):12479-89. doi: 10.1007/s11356-015-4530-7. Epub 2015 Apr 24.

PMID:
25903186
30.

Bacterial Modulation of Plant Ethylene Levels.

Gamalero E, Glick BR.

Plant Physiol. 2015 Sep;169(1):13-22. doi: 10.1104/pp.15.00284. Epub 2015 Apr 20. Review.

31.

Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance.

Yaish MW, Antony I, Glick BR.

Antonie Van Leeuwenhoek. 2015 Jun;107(6):1519-32. doi: 10.1007/s10482-015-0445-z. Epub 2015 Apr 10.

PMID:
25860542
32.

Differential expression of the seven rRNA operon promoters from the plant growth-promoting bacterium Pseudomonas sp. UW4.

Duan J, Reimer L, Heikkila JJ, Glick BR.

FEMS Microbiol Lett. 2014 Dec;361(2):181-9. doi: 10.1111/1574-6968.12629. Epub 2014 Nov 5.

33.

Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils.

Chang P, Gerhardt KE, Huang XD, Yu XM, Glick BR, Gerwing PD, Greenberg BM.

Int J Phytoremediation. 2014;16(7-12):1133-47.

PMID:
24933907
34.

New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance.

Nascimento FX, Rossi MJ, Soares CR, McConkey BJ, Glick BR.

PLoS One. 2014 Jun 6;9(6):e99168. doi: 10.1371/journal.pone.0099168. eCollection 2014.

36.

Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase.

Ali S, Charles TC, Glick BR.

Plant Physiol Biochem. 2014 Jul;80:160-7. doi: 10.1016/j.plaphy.2014.04.003. Epub 2014 Apr 18.

PMID:
24769617
37.

Molecular characterization and expression analysis of chloroplast protein import components in tomato (Solanum lycopersicum).

Yan J, Campbell JH, Glick BR, Smith MD, Liang Y.

PLoS One. 2014 Apr 21;9(4):e95088. doi: 10.1371/journal.pone.0095088. eCollection 2014.

38.

Bacterial ice crystal controlling proteins.

Lorv JS, Rose DR, Glick BR.

Scientifica (Cairo). 2014;2014:976895. doi: 10.1155/2014/976895. Epub 2014 Jan 20. Review.

39.

A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp.

Ali S, Duan J, Charles TC, Glick BR.

J Theor Biol. 2014 Feb 21;343:193-8.

PMID:
24513137
40.

Indole-3-acetic acid in plant-microbe interactions.

Duca D, Lorv J, Patten CL, Rose D, Glick BR.

Antonie Van Leeuwenhoek. 2014 Jul;106(1):85-125. doi: 10.1007/s10482-013-0095-y. Epub 2014 Jan 21. Review.

PMID:
24445491
41.

Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea.

Brígido C, Nascimento FX, Duan J, Glick BR, Oliveira S.

FEMS Microbiol Lett. 2013 Dec;349(1):46-53. doi: 10.1111/1574-6968.12294. Epub 2013 Oct 24.

42.

Bacteria with ACC deaminase can promote plant growth and help to feed the world.

Glick BR.

Microbiol Res. 2014 Jan 20;169(1):30-9. doi: 10.1016/j.micres.2013.09.009. Epub 2013 Sep 19. Review.

43.

Strategies to ameliorate abiotic stress-induced plant senescence.

Gepstein S, Glick BR.

Plant Mol Biol. 2013 Aug;82(6):623-33. doi: 10.1007/s11103-013-0038-z. Epub 2013 Apr 18. Review.

PMID:
23595200
44.

Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach.

Li J, McConkey BJ, Cheng Z, Guo S, Glick BR.

J Proteomics. 2013 Jun 12;84:119-31. doi: 10.1016/j.jprot.2013.03.011. Epub 2013 Apr 6.

PMID:
23568019
45.

The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

Duan J, Jiang W, Cheng Z, Heikkila JJ, Glick BR.

PLoS One. 2013;8(3):e58640. doi: 10.1371/journal.pone.0058640. Epub 2013 Mar 13.

46.

Investigating the role of protein UnkG from the Pseudomonas putida UW4 in the ability of the bacterium to facilitate plant growth.

Jiang W, Cheng Z, McConkey BJ, Glick BR.

Curr Microbiol. 2013 Apr;66(4):331-6. doi: 10.1007/s00284-012-0279-0. Epub 2012 Dec 2.

PMID:
23212206
47.

Characterization of bacteria associated with pinewood nematode Bursaphelenchus xylophilus.

Vicente CS, Nascimento F, Espada M, Barbosa P, Mota M, Glick BR, Oliveira S.

PLoS One. 2012;7(10):e46661. doi: 10.1371/journal.pone.0046661. Epub 2012 Oct 16.

48.

ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant.

Nascimento FX, Brígido C, Glick BR, Oliveira S.

FEMS Microbiol Lett. 2012 Nov;336(1):26-37. doi: 10.1111/j.1574-6968.2012.02648.x. Epub 2012 Aug 21.

49.

Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase.

Ali S, Charles TC, Glick BR.

J Appl Microbiol. 2012 Nov;113(5):1139-44. doi: 10.1111/j.1365-2672.2012.05409.x. Epub 2012 Aug 21.

50.

Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints.

Nascimento FX, Brígido C, Glick BR, Oliveira S, Alho L.

Lett Appl Microbiol. 2012 Jul;55(1):15-21. doi: 10.1111/j.1472-765X.2012.03251.x. Epub 2012 May 2.

Supplemental Content

Loading ...
Support Center