Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide.

Islam ZF, Cordero PRF, Feng J, Chen YJ, Bay SK, Jirapanjawat T, Gleadow RM, Carere CR, Stott MB, Chiri E, Greening C.

ISME J. 2019 Jul;13(7):1801-1813. doi: 10.1038/s41396-019-0393-0. Epub 2019 Mar 14.

2.

Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity.

Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, Grimwood J, Schmutz J, Rabbi IY, Egesi C, Nauluvula P, Lebot V, Ndunguru J, Mkamilo G, Bart RS, Setter TL, Gleadow RM, Kulakow P, Ferguson ME, Rounsley S, Rokhsar DS.

Nat Biotechnol. 2016 May;34(5):562-70. doi: 10.1038/nbt.3535. Epub 2016 Apr 18.

PMID:
27088722
3.

Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench).

Blomstedt CK, O'Donnell NH, Bjarnholt N, Neale AD, Hamill JD, Møller BL, Gleadow RM.

Plant Cell Physiol. 2016 Feb;57(2):373-86. doi: 10.1093/pcp/pcv153. Epub 2015 Oct 22.

PMID:
26493517
4.

The bifurcation of the cyanogenic glucoside and glucosinolate biosynthetic pathways.

Clausen M, Kannangara RM, Olsen CE, Blomstedt CK, Gleadow RM, Jørgensen K, Bak S, Motawie MS, Møller BL.

Plant J. 2015 Nov;84(3):558-73. doi: 10.1111/tpj.13023.

5.

Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time.

Neilson EH, Edwards AM, Blomstedt CK, Berger B, Møller BL, Gleadow RM.

J Exp Bot. 2015 Apr;66(7):1817-32. doi: 10.1093/jxb/eru526. Epub 2015 Feb 19.

6.

Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity.

Gleadow RM, Møller BL.

Annu Rev Plant Biol. 2014;65:155-85. doi: 10.1146/annurev-arplant-050213-040027. Epub 2014 Feb 24. Review.

PMID:
24579992
7.

Age versus stage: does ontogeny modify the effect of phosphorus and arbuscular mycorrhizas on above- and below-ground defence in forage sorghum?

Miller RE, Gleadow RM, Cavagnaro TR.

Plant Cell Environ. 2014 Apr;37(4):929-42. doi: 10.1111/pce.12209. Epub 2013 Nov 11.

8.

Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum.

O'Donnell NH, Møller BL, Neale AD, Hamill JD, Blomstedt CK, Gleadow RM.

Plant Physiol Biochem. 2013 Dec;73:83-92. doi: 10.1016/j.plaphy.2013.09.001. Epub 2013 Sep 18.

PMID:
24080394
9.

Drying and processing protocols affect the quantification of cyanogenic glucosides in forage sorghum.

Gleadow RM, Møldrup ME, O'Donnell NH, Stuart PN.

J Sci Food Agric. 2012 Aug 30;92(11):2234-8. doi: 10.1002/jsfa.5752. Epub 2012 Jun 14.

PMID:
22700371
10.

Estimating hydrogen cyanide in forage sorghum ( Sorghum bicolor ) by near-infrared spectroscopy.

Fox GP, O'Donnell NH, Stewart PN, Gleadow RM.

J Agric Food Chem. 2012 Jun 20;60(24):6183-7. doi: 10.1021/jf205030b. Epub 2012 Jun 12.

PMID:
22594883
11.

Variations in the chemical composition of cassava ( Manihot esculenta Crantz) leaves and roots as affected by genotypic and environmental variation.

Burns AE, Gleadow RM, Zacarias AM, Cuambe CE, Miller RE, Cavagnaro TR.

J Agric Food Chem. 2012 May 16;60(19):4946-56. doi: 10.1021/jf2047288. Epub 2012 May 4.

PMID:
22515684
12.

A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production.

Blomstedt CK, Gleadow RM, O'Donnell N, Naur P, Jensen K, Laursen T, Olsen CE, Stuart P, Hamill JD, Møller BL, Neale AD.

Plant Biotechnol J. 2012 Jan;10(1):54-66. doi: 10.1111/j.1467-7652.2011.00646.x. Epub 2011 Aug 31.

13.

Allocation of nitrogen to chemical defence and plant functional traits is constrained by soil N.

Simon J, Gleadow RM, Woodrow IE.

Tree Physiol. 2010 Sep;30(9):1111-7. doi: 10.1093/treephys/tpq049. Epub 2010 Jun 23.

PMID:
20573780
14.

Growth and nutritive value of cassava (Manihot esculenta Cranz.) are reduced when grown in elevated CO.

Gleadow RM, Evans JR, McCaffery S, Cavagnaro TR.

Plant Biol (Stuttg). 2009 Nov;11 Suppl 1:76-82. doi: 10.1111/j.1438-8677.2009.00238.x.

PMID:
19778371
15.

Changes in nutritional value of cyanogenic trifolium repens grown at elevated atmospheric CO2.

Gleadow RM, Edwards EJ, Evans JR.

J Chem Ecol. 2009 Apr;35(4):476-8. doi: 10.1007/s10886-009-9617-5. Epub 2009 Apr 8.

PMID:
19352773
16.

Frequency and distribution of cyanogenic glycosides in Eucalyptus L'Hérit.

Gleadow RM, Haburjak J, Dunn JE, Conn ME, Conn EE.

Phytochemistry. 2008 Jun;69(9):1870-4. doi: 10.1016/j.phytochem.2008.03.018. Epub 2008 May 10.

PMID:
18474385
17.

Regulation of oil accumulation in single glands of Eucalyptus polybractea.

King DJ, Gleadow RM, Woodrow IE.

New Phytol. 2006;172(3):440-51.

18.

Cyanogenic Eucalyptus nobilis is polymorphic for both prunasin and specific beta-glucosidases.

Gleadow RM, Vecchies AC, Woodrow IE.

Phytochemistry. 2003 Jul;63(6):699-704.

PMID:
12842143
19.

Temporal and spatial variation in cyanogenic glycosides in Eucalyptus cladocalyx.

Gleadow RM, Woodrow IE.

Tree Physiol. 2000 May;20(9):591-598.

PMID:
12651423
20.

Light alters the allocation of nitrogen to cyanogenic glycosides in Eucalyptus cladocalyx.

Burns AE, Gleadow RM, Woodrow IE.

Oecologia. 2002 Nov;133(3):288-294. doi: 10.1007/s00442-002-1055-9. Epub 2002 Nov 1.

PMID:
28466223
21.

Defense chemistry of cyanogenic Eucalyptus cladocalyx seedlings is affected by water supply.

Gleadow RM, Woodrow IE.

Tree Physiol. 2002 Sep;22(13):939-45.

PMID:
12204850
22.

Constraints on effectiveness of cyanogenic glycosides in herbivore defense.

Gleadow RM, Woodrow IE.

J Chem Ecol. 2002 Jul;28(7):1301-13.

PMID:
12199497

Supplemental Content

Loading ...
Support Center