Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 25

1.

Loss of CaMKI Function Disrupts Salt Aversive Learning in C. elegans.

Lim JP, Fehlauer H, Das A, Saro G, Glauser DA, Brunet A, Goodman MB.

J Neurosci. 2018 Jul 4;38(27):6114-6129. doi: 10.1523/JNEUROSCI.1611-17.2018. Epub 2018 Jun 6.

2.

The Bright Fluorescent Protein mNeonGreen Facilitates Protein Expression Analysis In Vivo.

Hostettler L, Grundy L, Käser-Pébernard S, Wicky C, Schafer WR, Glauser DA.

G3 (Bethesda). 2017 Feb 9;7(2):607-615. doi: 10.1534/g3.116.038133.

3.

Molecules empowering animals to sense and respond to temperature in changing environments.

Glauser DA, Goodman MB.

Curr Opin Neurobiol. 2016 Dec;41:92-98. doi: 10.1016/j.conb.2016.09.006. Epub 2016 Sep 19. Review.

PMID:
27657982
4.

Dual Color Neural Activation and Behavior Control with Chrimson and CoChR in Caenorhabditis elegans.

Schild LC, Glauser DA.

Genetics. 2015 Aug;200(4):1029-34. doi: 10.1534/genetics.115.177956. Epub 2015 May 28.

5.

The balance between cytoplasmic and nuclear CaM kinase-1 signaling controls the operating range of noxious heat avoidance.

Schild LC, Zbinden L, Bell HW, Yu YV, Sengupta P, Goodman MB, Glauser DA.

Neuron. 2014 Dec 3;84(5):983-96. doi: 10.1016/j.neuron.2014.10.039. Epub 2014 Nov 20.

6.

A conserved role for p48 homologs in protecting dopaminergic neurons from oxidative stress.

Bou Dib P, Gnägi B, Daly F, Sabado V, Tas D, Glauser DA, Meister P, Nagoshi E.

PLoS Genet. 2014 Oct 23;10(10):e1004718. doi: 10.1371/journal.pgen.1004718. eCollection 2014 Oct.

8.

How and why Caenorhabditis elegans uses distinct escape and avoidance regimes to minimize exposure to noxious heat.

Glauser DA.

Worm. 2013 Oct 1;2(4):e27285. doi: 10.4161/worm.27285. Epub 2013 Nov 25.

9.

acr-23 Encodes a monepantel-sensitive channel in Caenorhabditis elegans.

Rufener L, Bedoni N, Baur R, Rey S, Glauser DA, Bouvier J, Beech R, Sigel E, Puoti A.

PLoS Pathog. 2013;9(8):e1003524. doi: 10.1371/journal.ppat.1003524. Epub 2013 Aug 8.

10.

Dynamic switching between escape and avoidance regimes reduces Caenorhabditis elegans exposure to noxious heat.

Schild LC, Glauser DA.

Nat Commun. 2013;4:2198. doi: 10.1038/ncomms3198.

PMID:
23887613
11.

Intragenic alternative splicing coordination is essential for Caenorhabditis elegans slo-1 gene function.

Glauser DA, Johnson BE, Aldrich RW, Goodman MB.

Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20790-5. doi: 10.1073/pnas.1116712108. Epub 2011 Nov 14.

12.

Alternatively spliced domains interact to regulate BK potassium channel gating.

Johnson BE, Glauser DA, Dan-Glauser ES, Halling DB, Aldrich RW, Goodman MB.

Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20784-9. doi: 10.1073/pnas.1116795108. Epub 2011 Nov 2.

13.

DEG/ENaC but not TRP channels are the major mechanoelectrical transduction channels in a C. elegans nociceptor.

Geffeney SL, Cueva JG, Glauser DA, Doll JC, Lee TH, Montoya M, Karania S, Garakani AM, Pruitt BL, Goodman MB.

Neuron. 2011 Sep 8;71(5):845-57. doi: 10.1016/j.neuron.2011.06.038.

14.

Heat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans.

Glauser DA, Chen WC, Agin R, Macinnis BL, Hellman AB, Garrity PA, Tan MW, Goodman MB.

Genetics. 2011 May;188(1):91-103. doi: 10.1534/genetics.111.127100. Epub 2011 Mar 2.

15.

Neuropeptides strike back.

Glauser DA, Goodman MB.

Nat Neurosci. 2010 May;13(5):528-9. doi: 10.1038/nn0510-528. No abstract available.

PMID:
20421897
16.

The FoxO/Bcl-6/cyclin D2 pathway mediates metabolic and growth factor stimulation of proliferation in Min6 pancreatic beta-cells.

Glauser DA, Schlegel W.

J Recept Signal Transduct Res. 2009 Dec;29(6):293-8. doi: 10.3109/10799890903241824.

PMID:
19929250
17.

Role of histidine-86 in the catalytic mechanism of ferredoxin:thioredoxin reductase.

Walters EM, Garcia-Serres R, Naik SG, Bourquin F, Glauser DA, Schürmann P, Huynh BH, Johnson MK.

Biochemistry. 2009 Feb 10;48(5):1016-24. doi: 10.1021/bi802074p.

18.

FoxO proteins in pancreatic β-cells as potential therapeutic targets in diabetes.

Glauser DA, Schlegel W.

Expert Rev Endocrinol Metab. 2008 Mar;3(2):175-185. doi: 10.1586/17446651.3.2.175.

PMID:
30764091
19.

Structural snapshots along the reaction pathway of ferredoxin-thioredoxin reductase.

Dai S, Friemann R, Glauser DA, Bourquin F, Manieri W, Schürmann P, Eklund H.

Nature. 2007 Jul 5;448(7149):92-6.

PMID:
17611542
21.
22.

The emerging role of FOXO transcription factors in pancreatic beta cells.

Glauser DA, Schlegel W.

J Endocrinol. 2007 May;193(2):195-207. Review.

PMID:
17470511
23.

Mechanisms of transcriptional regulation underlying temporal integration of signals.

Glauser DA, Schlegel W.

Nucleic Acids Res. 2006;34(18):5175-83. Epub 2006 Sep 22.

24.

Spectroscopic characterization of site-specific [Fe(4)S(4)] cluster chemistry in ferredoxin:thioredoxin reductase: implications for the catalytic mechanism.

Walters EM, Garcia-Serres R, Jameson GN, Glauser DA, Bourquin F, Manieri W, Schürmann P, Johnson MK, Huynh BH.

J Am Chem Soc. 2005 Jul 6;127(26):9612-24.

PMID:
15984889
25.

Characterization of ferredoxin:thioredoxin reductase modified by site-directed mutagenesis.

Glauser DA, Bourquin F, Manieri W, Schürmann P.

J Biol Chem. 2004 Apr 16;279(16):16662-9. Epub 2004 Feb 9.

Supplemental Content

Loading ...
Support Center