Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 157

1.

Programmed Cell Death in Neurospora crassa Is Controlled by the Allorecognition Determinant rcd-1.

Daskalov A, Gladieux P, Heller J, Glass NL.

Genetics. 2019 Oct 21. pii: genetics.302617.2019. doi: 10.1534/genetics.119.302617. [Epub ahead of print]

2.

Identification and manipulation of Neurospora crassa genes involved in sensitivity to furfural.

Feldman D, Kowbel DJ, Cohen A, Glass NL, Hadar Y, Yarden O.

Biotechnol Biofuels. 2019 Sep 4;12:210. doi: 10.1186/s13068-019-1550-4. eCollection 2019.

3.

Allorecognition upon Fungal Cell-Cell Contact Determines Social Cooperation and Impacts the Acquisition of Multicellularity.

Gonçalves AP, Heller J, Span EA, Rosenfield G, Do HP, Palma-Guerrero J, Requena N, Marletta MA, Glass NL.

Curr Biol. 2019 Sep 23;29(18):3006-3017.e3. doi: 10.1016/j.cub.2019.07.060. Epub 2019 Aug 29.

PMID:
31474536
4.

Communicate and Fuse: How Filamentous Fungi Establish and Maintain an Interconnected Mycelial Network.

Fischer MS, Glass NL.

Front Microbiol. 2019 Mar 29;10:619. doi: 10.3389/fmicb.2019.00619. eCollection 2019. Review.

5.

Integration of Self and Non-self Recognition Modulates Asexual Cell-to-Cell Communication in Neurospora crassa.

Fischer MS, Jonkers W, Glass NL.

Genetics. 2019 Apr;211(4):1255-1267. doi: 10.1534/genetics.118.301780. Epub 2019 Feb 4.

PMID:
30718271
6.

The power of discussion: Support for women at the fungal Gordon Research Conference.

Riquelme M, Aime MC, Branco S, Brand A, Brown A, Glass NL, Kahmann R, Momany M, Rokas A, Trail F.

Fungal Genet Biol. 2018 Dec;121:65-67. doi: 10.1016/j.fgb.2018.09.007. Epub 2018 Sep 24. No abstract available.

PMID:
30261275
7.

Regulation of Cell-to-Cell Communication and Cell Wall Integrity by a Network of MAP Kinase Pathways and Transcription Factors in Neurospora crassa.

Fischer MS, Wu VW, Lee JE, O'Malley RC, Glass NL.

Genetics. 2018 Jun;209(2):489-506. doi: 10.1534/genetics.118.300904. Epub 2018 Apr 20.

8.

Synthetic Gene Network with Positive Feedback Loop Amplifies Cellulase Gene Expression in Neurospora crassa.

Matsu-Ura T, Dovzhenok AA, Coradetti ST, Subramanian KR, Meyer DR, Kwon JJ, Kim C, Salomonis N, Glass NL, Lim S, Hong CI.

ACS Synth Biol. 2018 May 18;7(5):1395-1405. doi: 10.1021/acssynbio.8b00011. Epub 2018 Apr 20.

PMID:
29625007
9.

Author Correction: A role for small secreted proteins (SSPs) in a saprophytic fungal lifestyle: Ligninolytic enzyme regulation in Pleurotus ostreatus.

Feldman D, Kowbel DJ, Glass NL, Yarden O, Hadar Y.

Sci Rep. 2018 Mar 6;8(1):4213. doi: 10.1038/s41598-018-21904-x.

10.

NLR surveillance of essential SEC-9 SNARE proteins induces programmed cell death upon allorecognition in filamentous fungi.

Heller J, Clavé C, Gladieux P, Saupe SJ, Glass NL.

Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2292-E2301. doi: 10.1073/pnas.1719705115. Epub 2018 Feb 20.

11.

The major cellulases CBH-1 and CBH-2 of Neurospora crassa rely on distinct ER cargo adaptors for efficient ER-exit.

Starr TL, Gonçalves AP, Meshgin N, Glass NL.

Mol Microbiol. 2018 Jan;107(2):229-248. doi: 10.1111/mmi.13879. Epub 2017 Dec 11.

12.

Near-Cognate Codons Contribute Complexity to Translation Regulation.

Glass NL.

MBio. 2017 Nov 7;8(6). pii: e01820-17. doi: 10.1128/mBio.01820-17.

13.

A role for small secreted proteins (SSPs) in a saprophytic fungal lifestyle: Ligninolytic enzyme regulation in Pleurotus ostreatus.

Feldman D, Kowbel DJ, Glass NL, Yarden O, Hadar Y.

Sci Rep. 2017 Nov 6;7(1):14553. doi: 10.1038/s41598-017-15112-2. Erratum in: Sci Rep. 2018 Mar 6;8(1):4213.

14.

Regulated Forms of Cell Death in Fungi.

Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL.

Front Microbiol. 2017 Sep 21;8:1837. doi: 10.3389/fmicb.2017.01837. eCollection 2017. Review.

15.

Network of nutrient-sensing pathways and a conserved kinase cascade integrate osmolarity and carbon sensing in Neurospora crassa.

Huberman LB, Coradetti ST, Glass NL.

Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):E8665-E8674. doi: 10.1073/pnas.1707713114. Epub 2017 Sep 25.

16.

Network reconstruction and systems analysis of plant cell wall deconstruction by Neurospora crassa.

Samal A, Craig JP, Coradetti ST, Benz JP, Eddy JA, Price ND, Glass NL.

Biotechnol Biofuels. 2017 Sep 21;10:225. doi: 10.1186/s13068-017-0901-2. eCollection 2017.

17.

The transcription factor PDR-1 is a multi-functional regulator and key component of pectin deconstruction and catabolism in Neurospora crassa.

Thieme N, Wu VW, Dietschmann A, Salamov AA, Wang M, Johnson J, Singan VR, Grigoriev IV, Glass NL, Somerville CR, Benz JP.

Biotechnol Biofuels. 2017 Jun 12;10:149. doi: 10.1186/s13068-017-0807-z. eCollection 2017.

18.

A fungal transcription factor essential for starch degradation affects integration of carbon and nitrogen metabolism.

Xiong Y, Wu VW, Lubbe A, Qin L, Deng S, Kennedy M, Bauer D, Singan VR, Barry K, Northen TR, Grigoriev IV, Glass NL.

PLoS Genet. 2017 May 3;13(5):e1006737. doi: 10.1371/journal.pgen.1006737. eCollection 2017 May.

19.

Deciphering the Regulatory Network between the SREBP Pathway and Protein Secretion in Neurospora crassa.

Qin L, Wu VW, Glass NL.

MBio. 2017 Apr 18;8(2). pii: e00233-17. doi: 10.1128/mBio.00233-17.

20.

Molecular Mechanisms Regulating Cell Fusion and Heterokaryon Formation in Filamentous Fungi.

Daskalov A, Heller J, Herzog S, Fleißner A, Glass NL.

Microbiol Spectr. 2017 Mar;5(2). doi: 10.1128/microbiolspec.FUNK-0015-2016. Review.

21.

Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes.

Wu VW, Dana CM, Iavarone AT, Clark DS, Glass NL.

MBio. 2017 Jan 17;8(1). pii: e02231-16. doi: 10.1128/mBio.02231-16.

22.

The Enigmatic Universe of the Herbivore Gut.

Glass NL.

Trends Biochem Sci. 2016 Jul;41(7):561-562. doi: 10.1016/j.tibs.2016.05.007. Epub 2016 May 30.

23.

Characterization of Greenbeard Genes Involved in Long-Distance Kind Discrimination in a Microbial Eukaryote.

Heller J, Zhao J, Rosenfield G, Kowbel DJ, Gladieux P, Glass NL.

PLoS Biol. 2016 Apr 14;14(4):e1002431. doi: 10.1371/journal.pbio.1002431. eCollection 2016 Apr.

24.

Chemotropism and Cell Fusion in Neurospora crassa Relies on the Formation of Distinct Protein Complexes by HAM-5 and a Novel Protein HAM-14.

Jonkers W, Fischer MS, Do HP, Starr TL, Glass NL.

Genetics. 2016 May;203(1):319-34. doi: 10.1534/genetics.115.185348. Epub 2016 Mar 30.

25.

The SEB-1 Transcription Factor Binds to the STRE Motif in Neurospora crassa and Regulates a Variety of Cellular Processes Including the Stress Response and Reserve Carbohydrate Metabolism.

Freitas FZ, Virgilio S, Cupertino FB, Kowbel DJ, Fioramonte M, Gozzo FC, Glass NL, Bertolini MC.

G3 (Bethesda). 2016 May 3;6(5):1327-43. doi: 10.1534/g3.116.028506.

26.

Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan.

Lopez-Moya F, Kowbel D, Nueda MJ, Palma-Guerrero J, Glass NL, Lopez-Llorca LV.

Mol Biosyst. 2016 Feb;12(2):391-403. doi: 10.1039/c5mb00649j.

27.

Transcription profiling of the Neurospora crassa response to a group of synthetic (thio)xanthones and a natural acetophenone.

Pedro Gonçalves A, Silva N, Oliveira C, Kowbel DJ, Glass NL, Kijjoa A, Palmeira A, Sousa E, Pinto M, Videira A.

Genom Data. 2015 Feb 20;4:26-32. doi: 10.1016/j.gdata.2015.02.001. eCollection 2015 Jun.

28.

Direct target network of the Neurospora crassa plant cell wall deconstruction regulators CLR-1, CLR-2, and XLR-1.

Craig JP, Coradetti ST, Starr TL, Glass NL.

MBio. 2015 Oct 13;6(5):e01452-15. doi: 10.1128/mBio.01452-15.

29.

Deletion of homologs of the SREBP pathway results in hyper-production of cellulases in Neurospora crassa and Trichoderma reesei.

Reilly MC, Qin L, Craig JP, Starr TL, Glass NL.

Biotechnol Biofuels. 2015 Aug 19;8:121. doi: 10.1186/s13068-015-0297-9. eCollection 2015.

30.

Identification of Allorecognition Loci in Neurospora crassa by Genomics and Evolutionary Approaches.

Zhao J, Gladieux P, Hutchison E, Bueche J, Hall C, Perraudeau F, Glass NL.

Mol Biol Evol. 2015 Sep;32(9):2417-32. doi: 10.1093/molbev/msv125. Epub 2015 May 28.

31.

Detoxification of 5-hydroxymethylfurfural by the Pleurotus ostreatus lignolytic enzymes aryl alcohol oxidase and dehydrogenase.

Feldman D, Kowbel DJ, Glass NL, Yarden O, Hadar Y.

Biotechnol Biofuels. 2015 Apr 11;8:63. doi: 10.1186/s13068-015-0244-9. eCollection 2015.

32.

Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels.

Li X, Yu VY, Lin Y, Chomvong K, Estrela R, Park A, Liang JM, Znameroski EA, Feehan J, Kim SR, Jin YS, Glass NL, Cate JH.

Elife. 2015 Feb 3;4. doi: 10.7554/eLife.05896.

33.

Identification and characterization of LFD-2, a predicted fringe protein required for membrane integrity during cell fusion in neurospora crassa.

Palma-Guerrero J, Zhao J, Gonçalves AP, Starr TL, Glass NL.

Eukaryot Cell. 2015 Mar;14(3):265-77. doi: 10.1128/EC.00233-14. Epub 2015 Jan 16.

34.

Neurospora crassa: looking back and looking forward at a model microbe.

Roche CM, Loros JJ, McCluskey K, Glass NL.

Am J Bot. 2014 Dec;101(12):2022-35. doi: 10.3732/ajb.1400377. Epub 2014 Nov 16. Review.

35.

HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa.

Jonkers W, Leeder AC, Ansong C, Wang Y, Yang F, Starr TL, Camp DG 2nd, Smith RD, Glass NL.

PLoS Genet. 2014 Nov 20;10(11):e1004783. doi: 10.1371/journal.pgen.1004783. eCollection 2014 Nov.

36.

VIB1, a link between glucose signaling and carbon catabolite repression, is essential for plant cell wall degradation by Neurospora crassa.

Xiong Y, Sun J, Glass NL.

PLoS Genet. 2014 Aug 21;10(8):e1004500. doi: 10.1371/journal.pgen.1004500. eCollection 2014 Aug.

37.

Transcriptional interference by antisense RNA is required for circadian clock function.

Xue Z, Ye Q, Anson SR, Yang J, Xiao G, Kowbel D, Glass NL, Crosthwaite SK, Liu Y.

Nature. 2014 Oct 30;514(7524):650-3. doi: 10.1038/nature13671. Epub 2014 Aug 17.

38.

Extracellular calcium triggers unique transcriptional programs and modulates staurosporine-induced cell death in Neurospora crassa.

Gonçalves AP, Monteiro J, Lucchi C, Kowbel DJ, Cordeiro JM, Correia-de-Sá P, Rigden DJ, Glass NL, Videira A.

Microb Cell. 2014 Aug 9;1(9):289-302. doi: 10.15698/mic2014.09.165.

39.

Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi.

Kubicek CP, Starr TL, Glass NL.

Annu Rev Phytopathol. 2014;52:427-51. doi: 10.1146/annurev-phyto-102313-045831. Epub 2014 Jun 16. Review.

PMID:
25001456
40.

The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation.

Xiong Y, Coradetti ST, Li X, Gritsenko MA, Clauss T, Petyuk V, Camp D, Smith R, Cate JHD, Yang F, Glass NL.

Fungal Genet Biol. 2014 Nov;72:21-33. doi: 10.1016/j.fgb.2014.05.005. Epub 2014 May 29.

41.

CZT-1 is a novel transcription factor controlling cell death and natural drug resistance in Neurospora crassa.

Gonçalves AP, Hall C, Kowbel DJ, Glass NL, Videira A.

G3 (Bethesda). 2014 Apr 8;4(6):1091-102. doi: 10.1534/g3.114.011312.

42.

Engineering the filamentous fungus Neurospora crassa for lipid production from lignocellulosic biomass.

Roche CM, Glass NL, Blanch HW, Clark DS.

Biotechnol Bioeng. 2014 Jun;111(6):1097-107. doi: 10.1002/bit.25211. Epub 2014 Apr 3.

PMID:
24700367
43.

Discovering functions of unannotated genes from a transcriptome survey of wild fungal isolates.

Ellison CE, Kowbel D, Glass NL, Taylor JW, Brem RB.

MBio. 2014 Apr 1;5(2):e01046-13. doi: 10.1128/mBio.01046-13.

44.

Identification and characterization of LFD1, a novel protein involved in membrane merger during cell fusion in Neurospora crassa.

Palma-Guerrero J, Leeder AC, Welch J, Glass NL.

Mol Microbiol. 2014 Apr;92(1):164-82. doi: 10.1111/mmi.12545. Epub 2014 Mar 6.

45.

Evidence for transceptor function of cellodextrin transporters in Neurospora crassa.

Znameroski EA, Li X, Tsai JC, Galazka JM, Glass NL, Cate JH.

J Biol Chem. 2014 Jan 31;289(5):2610-9. doi: 10.1074/jbc.M113.533273. Epub 2013 Dec 16.

46.

A comparative systems analysis of polysaccharide-elicited responses in Neurospora crassa reveals carbon source-specific cellular adaptations.

Benz JP, Chau BH, Zheng D, Bauer S, Glass NL, Somerville CR.

Mol Microbiol. 2014 Jan;91(2):275-99. doi: 10.1111/mmi.12459. Epub 2013 Dec 4.

47.

Comparison of the development of performance skills in ultrasound-guided regional anesthesia simulations with different phantom models.

Liu Y, Glass NL, Glover CD, Power RW, Watcha MF.

Simul Healthc. 2013 Dec;8(6):368-75. doi: 10.1097/SIH.0b013e318299dae2.

PMID:
24096912
48.

Early colony establishment in Neurospora crassa requires a MAP kinase regulatory network.

Leeder AC, Jonkers W, Li J, Glass NL.

Genetics. 2013 Nov;195(3):883-98. doi: 10.1534/genetics.113.156984. Epub 2013 Sep 13.

49.

Genome wide association identifies novel loci involved in fungal communication.

Palma-Guerrero J, Hall CR, Kowbel D, Welch J, Taylor JW, Brem RB, Glass NL.

PLoS Genet. 2013;9(8):e1003669. doi: 10.1371/journal.pgen.1003669. Epub 2013 Aug 1.

50.

Physiological role of Acyl coenzyme A synthetase homologs in lipid metabolism in Neurospora crassa.

Roche CM, Blanch HW, Clark DS, Glass NL.

Eukaryot Cell. 2013 Sep;12(9):1244-57. doi: 10.1128/EC.00079-13. Epub 2013 Jul 19.

Supplemental Content

Loading ...
Support Center