Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 55

1.

Highly Flexible Precisely Braided Multielectrode Probes and Combinatorics for Future Neuroprostheses.

Kim T, Schmidt K, Deemie C, Wycech J, Liang H, Giszter SF.

Front Neurosci. 2019 Jun 18;13:613. doi: 10.3389/fnins.2019.00613. eCollection 2019.

2.

Motor primitives are determined in early development and are then robustly conserved into adulthood.

Yang Q, Logan D, Giszter SF.

Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):12025-12034. doi: 10.1073/pnas.1821455116. Epub 2019 May 28.

3.

Precise Tubular Braid Structures of Ultrafine Microwires as Neural Probes: Significantly Reduced Chronic Immune Response and Greater Local Neural Survival in Rat Cortex.

Kim T, Zhong Y, Giszter SF.

IEEE Trans Neural Syst Rehabil Eng. 2019 May;27(5):846-856. doi: 10.1109/TNSRE.2019.2911912. Epub 2019 Apr 18.

PMID:
30998475
4.

Modularity in the intact and spinal cat: methods, issues and questions for the future.

Giszter SF.

J Physiol. 2019 Jan;597(1):13. doi: 10.1113/JP277310. Epub 2018 Dec 18. No abstract available.

5.

Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury.

Hormigo KM, Zholudeva LV, Spruance VM, Marchenko V, Cote MP, Vinit S, Giszter S, Bezdudnaya T, Lane MA.

Exp Neurol. 2017 Jan;287(Pt 2):276-287. doi: 10.1016/j.expneurol.2016.08.018. Epub 2016 Aug 28. Review.

6.

Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence.

Udoekwere UI, Oza CS, Giszter SF.

J Neurosci. 2016 Aug 10;36(32):8341-55. doi: 10.1523/JNEUROSCI.2435-14.2016.

7.

Trunk Postural Muscle Timing Is Not Compromised In Low Back Pain Patients Clinically Diagnosed With Movement Coordination Impairments.

Mehta R, Cannella M, Henry SM, Smith S, Giszter S, Silfies SP.

Motor Control. 2017 Apr;21(2):133-157. doi: 10.1123/mc.2015-0049. Epub 2016 Aug 19.

8.

Adaptation to elastic loads and BMI robot controls during rat locomotion examined with point-process GLMs.

Song W, Cajigas I, Brown EN, Giszter SF.

Front Syst Neurosci. 2015 Apr 28;9:62. doi: 10.3389/fnsys.2015.00062. eCollection 2015.

9.
10.

Motor primitives--new data and future questions.

Giszter SF.

Curr Opin Neurobiol. 2015 Aug;33:156-65. doi: 10.1016/j.conb.2015.04.004. Epub 2015 Apr 22. Review.

11.
12.

Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training.

Oza CS, Giszter SF.

Exp Neurol. 2014 Jun;256:57-69. doi: 10.1016/j.expneurol.2014.03.012. Epub 2014 Apr 3.

PMID:
24704619
13.

A pelvic implant orthosis in rodents, for spinal cord injury rehabilitation, and for brain machine interface research: construction, surgical implantation and validation.

Udoekwere UI, Oza CS, Giszter SF.

J Neurosci Methods. 2014 Jan 30;222:199-206. doi: 10.1016/j.jneumeth.2013.10.022. Epub 2013 Nov 19.

14.

Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords.

Kim T, Branner A, Gulati T, Giszter SF.

J Neural Eng. 2013 Aug;10(4):045001. doi: 10.1088/1741-2560/10/4/045001. Epub 2013 May 31.

15.

Distinguishing synchronous and time-varying synergies using point process interval statistics: motor primitives in frog and rat.

Hart CB, Giszter SF.

Front Comput Neurosci. 2013 May 9;7:52. doi: 10.3389/fncom.2013.00052. eCollection 2013.

16.

Motor primitives and synergies in the spinal cord and after injury--the current state of play.

Giszter SF, Hart CB.

Ann N Y Acad Sci. 2013 Mar;1279:114-26. doi: 10.1111/nyas.12065. Review.

17.

Robot-driven spinal epidural stimulation compared with conventional stimulation in adult spinalized rats.

Hsieh FH, Giszter SF.

Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5807-10. doi: 10.1109/IEMBS.2011.6091437.

18.

Adaptation to a cortex-controlled robot attached at the pelvis and engaged during locomotion in rats.

Song W, Giszter SF.

J Neurosci. 2011 Feb 23;31(8):3110-28. doi: 10.1523/JNEUROSCI.2335-10.2011.

19.

How spinalized rats can walk: biomechanics, cortex, and hindlimb muscle scaling--implications for rehabilitation.

Giszter SF, Hockensmith G, Ramakrishnan A, Udoekwere UI.

Ann N Y Acad Sci. 2010 Jun;1198:279-93. doi: 10.1111/j.1749-6632.2010.05534.x.

20.

A neural basis for motor primitives in the spinal cord.

Hart CB, Giszter SF.

J Neurosci. 2010 Jan 27;30(4):1322-36. doi: 10.1523/JNEUROSCI.5894-08.2010.

21.

Spinal cord modularity: evolution, development, and optimization and the possible relevance to low back pain in man.

Giszter SF, Hart CB, Silfies SP.

Exp Brain Res. 2010 Jan;200(3-4):283-306. doi: 10.1007/s00221-009-2016-x. Epub 2009 Oct 9. Review. No abstract available.

22.

A simple experimentally based model using proprioceptive regulation of motor primitives captures adjusted trajectory formation in spinal frogs.

Kargo WJ, Ramakrishnan A, Hart CB, Rome LC, Giszter SF.

J Neurophysiol. 2010 Jan;103(1):573-90. doi: 10.1152/jn.01054.2007. Epub 2009 Aug 5.

23.

Multiple types of movement-related information encoded in hindlimb/trunk cortex in rats and potentially available for brain-machine interface controls.

Song W, Ramakrishnan A, Udoekwere UI, Giszter SF.

IEEE Trans Biomed Eng. 2009 Nov;56(11 Pt 2):2712-6. doi: 10.1109/TBME.2009.2026284. Epub 2009 Jul 14.

24.

Trunk control during standing reach: A dynamical system analysis of movement strategies in patients with mechanical low back pain.

Silfies SP, Bhattacharya A, Biely S, Smith SS, Giszter S.

Gait Posture. 2009 Apr;29(3):370-6. doi: 10.1016/j.gaitpost.2008.10.053. Epub 2008 Nov 28.

25.

Coordination strategies for limb forces during weight-bearing locomotion in normal rats, and in rats spinalized as neonates.

Giszter SF, Davies MR, Graziani V.

Exp Brain Res. 2008 Sep;190(1):53-69. doi: 10.1007/s00221-008-1451-4. Epub 2008 Jul 9.

26.

Trunk sensorimotor cortex is essential for autonomous weight-supported locomotion in adult rats spinalized as P1/P2 neonates.

Giszter S, Davies MR, Ramakrishnan A, Udoekwere UI, Kargo WJ.

J Neurophysiol. 2008 Aug;100(2):839-51. doi: 10.1152/jn.00866.2007. Epub 2008 May 28.

27.
28.

Spinal cord injury: present and future therapeutic devices and prostheses.

Giszter SF.

Neurotherapeutics. 2008 Jan;5(1):147-62. doi: 10.1016/j.nurt.2007.10.062. Review.

29.

Robot application of elastic fields to the pelvis of the spinal transected rat: a tool for detailed assessment and rehabilitation.

Udoekwere UI, Ramakrishnan A, Mbi L, Giszter SF.

Conf Proc IEEE Eng Med Biol Soc. 2006;1:3684-7.

30.
31.

Motor strategies used by rats spinalized at birth to maintain stance in response to imposed perturbations.

Giszter SF, Davies MR, Graziani V.

J Neurophysiol. 2007 Apr;97(4):2663-75. Epub 2007 Feb 7.

32.

Decerebrate mammalian preparations: unalleviated or fully alleviated pain? A review and opinion.

Silverman J, Garnett NL, Giszter SF, Heckman CJ 2nd, Kulpa-Eddy JA, Lemay MA, Perry CK, Pinter M.

Contemp Top Lab Anim Sci. 2005 Jul;44(4):34-6. Review.

PMID:
16050666
33.

Modular premotor drives and unit bursts as primitives for frog motor behaviors.

Hart CB, Giszter SF.

J Neurosci. 2004 Jun 2;24(22):5269-82.

34.

Towards a definition of recovery of function.

Murray M, Fischer I, Smeraski C, Tessler A, Giszter S.

J Neurotrauma. 2004 Apr;21(4):405-13. Review.

PMID:
15115590
35.
36.
37.

Computational modeling of integration of voluntary/behavioral and automatic mechanisms for breathing control.

Rybak IA, Moxon KA, Giszter S, Chapin JK.

Adv Exp Med Biol. 2001;499:425-30. No abstract available.

PMID:
11729919
38.

Output units of motor behavior: an experimental and modeling study.

Loeb EP, Giszter SF, Saltiel P, Bizzi E, Mussa-Ivaldi FA.

J Cogn Neurosci. 2000 Jan;12(1):78-97.

PMID:
10769307
39.
40.

Rapid correction of aimed movements by summation of force-field primitives.

Kargo WJ, Giszter SF.

J Neurosci. 2000 Jan 1;20(1):409-26.

41.

Direct agonists for serotonin receptors enhance locomotor function in rats that received neural transplants after neonatal spinal transection.

Kim D, Adipudi V, Shibayama M, Giszter S, Tessler A, Murray M, Simansky KJ.

J Neurosci. 1999 Jul 15;19(14):6213-24.

42.

Pattern generators and cortical maps in locomotion of spinal injured rats.

Giszter S, Graziani V, Kargo W, Hockensmith G, Davies MR, Smeraski CS, Murray M.

Ann N Y Acad Sci. 1998 Nov 16;860:554-5. No abstract available.

PMID:
9928361
43.

Segmental afferent regulation of hindlimb wiping in the spinal frog.

Kargo WJ, Davies MR, Giszter SF.

Ann N Y Acad Sci. 1998 Nov 16;860:456-7. No abstract available.

PMID:
9928337
44.
45.

Fetal transplants alter the development of function after spinal cord transection in newborn rats.

Miya D, Giszter S, Mori F, Adipudi V, Tessler A, Murray M.

J Neurosci. 1997 Jun 15;17(12):4856-72.

46.

Embryonic spinal cord transplants enhance locomotor performance in spinalized newborn rats.

Tessler A, Fischer I, Giszter S, Himes BT, Miya D, Mori F, Murray M.

Adv Neurol. 1997;72:291-303. Review.

PMID:
8993706
47.

Modular organization of motor behavior in the frog's spinal cord.

Bizzi E, Giszter SF, Loeb E, Mussa-Ivaldi FA, Saltiel P.

Trends Neurosci. 1995 Oct;18(10):442-6. Review.

PMID:
8545910
48.

Linear combinations of primitives in vertebrate motor control.

Mussa-Ivaldi FA, Giszter SF, Bizzi E.

Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7534-8.

49.

Convergent force fields organized in the frog's spinal cord.

Giszter SF, Mussa-Ivaldi FA, Bizzi E.

J Neurosci. 1993 Feb;13(2):467-91.

50.

Effects of dorsal root cut on the forces evoked by spinal microstimulation in the spinalized frog.

Loeb EP, Giszter SF, Borghesani P, Bizzi E.

Somatosens Mot Res. 1993;10(1):81-95.

PMID:
8484299

Supplemental Content

Loading ...
Support Center