Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

Taxonomy, together with ontogeny and growing conditions, drives needleleaf species' sensitivity to climate in boreal North America.

Marchand W, Girardin MP, Hartmann H, Gauthier S, Bergeron Y.

Glob Chang Biol. 2019 Apr 23. doi: 10.1111/gcb.14665. [Epub ahead of print]

PMID:
31012507
2.

Twentieth century redistribution in climatic drivers of global tree growth.

Babst F, Bouriaud O, Poulter B, Trouet V, Girardin MP, Frank DC.

Sci Adv. 2019 Jan 16;5(1):eaat4313. doi: 10.1126/sciadv.aat4313. eCollection 2019 Jan.

3.

North America's oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster.

Giguère-Croteau C, Boucher É, Bergeron Y, Girardin MP, Drobyshev I, Silva LCR, Hélie JF, Garneau M.

Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2749-2754. doi: 10.1073/pnas.1816686116. Epub 2019 Jan 28. Erratum in: Proc Natl Acad Sci U S A. 2019 Feb 25;:.

4.

Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change.

Housset JM, Nadeau S, Isabel N, Depardieu C, Duchesne I, Lenz P, Girardin MP.

New Phytol. 2018 Apr;218(2):630-645. doi: 10.1111/nph.14968. Epub 2018 Jan 4.

5.

No growth stimulation of Canada's boreal forest under half-century of combined warming and CO2 fertilization.

Girardin MP, Bouriaud O, Hogg EH, Kurz W, Zimmermann NE, Metsaranta JM, de Jong R, Frank DC, Esper J, Büntgen U, Guo XJ, Bhatti J.

Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):E8406-E8414. doi: 10.1073/pnas.1610156113. Epub 2016 Dec 12.

6.

Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming.

Girardin MP, Hogg EH, Bernier PY, Kurz WA, Guo XJ, Cyr G.

Glob Chang Biol. 2016 Feb;22(2):627-43. doi: 10.1111/gcb.13072. Epub 2015 Oct 28.

PMID:
26507106
7.

Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers.

Blarquez O, Ali AA, Girardin MP, Grondin P, Fréchette B, Bergeron Y, Hély C.

Sci Rep. 2015 Sep 2;5:13356. doi: 10.1038/srep13356.

8.

Unusual forest growth decline in boreal North America covaries with the retreat of Arctic sea ice.

Girardin MP, Guo XJ, De Jong R, Kinnard C, Bernier P, Raulier F.

Glob Chang Biol. 2014 Mar;20(3):851-66. doi: 10.1111/gcb.12400. Epub 2013 Dec 26.

PMID:
24115302
9.

Vegetation limits the impact of a warm climate on boreal wildfires.

Girardin MP, Ali AA, Carcaillet C, Blarquez O, Hély C, Terrier A, Genries A, Bergeron Y.

New Phytol. 2013 Sep;199(4):1001-11. doi: 10.1111/nph.12322. Epub 2013 May 21.

10.

Potential changes in forest composition could reduce impacts of climate change on boreal wildfires.

Terrier A, Girardin MP, Périé C, Legendre P, Bergeron Y.

Ecol Appl. 2013 Jan;23(1):21-35.

PMID:
23495633
11.

Control of the multimillennial wildfire size in boreal North America by spring climatic conditions.

Ali AA, Blarquez O, Girardin MP, Hély C, Tinquaut F, El Guellab A, Valsecchi V, Terrier A, Bremond L, Genries A, Gauthier S, Bergeron Y.

Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20966-70. doi: 10.1073/pnas.1203467109. Epub 2012 Dec 3.

12.

Past and future changes in Canadian boreal wildfire activity.

Girardin MP, Mudelsee M.

Ecol Appl. 2008 Mar;18(2):391-406.

PMID:
18488604

Supplemental Content

Loading ...
Support Center