Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 312

1.

Improving survival prediction of high-grade glioma via machine learning techniques based on MRI radiomic, genetic and clinical risk factors.

Tan Y, Mu W, Wang XC, Yang GQ, Gillies RJ, Zhang H.

Eur J Radiol. 2019 Jul 13;120:108609. doi: 10.1016/j.ejrad.2019.07.010. [Epub ahead of print]

PMID:
31606714
2.

Stability and reproducibility of computed tomography radiomic features extracted from peritumoral regions of lung cancer lesions.

Tunali I, Hall LO, Napel S, Cherezov D, Guvenis A, Gillies RJ, Schabath MB.

Med Phys. 2019 Sep 8. doi: 10.1002/mp.13808. [Epub ahead of print]

PMID:
31494946
3.

Multi-window CT based Radiomic signatures in differentiating indolent versus aggressive lung cancers in the National Lung Screening Trial: a retrospective study.

Lu H, Mu W, Balagurunathan Y, Qi J, Abdalah MA, Garcia AL, Ye Z, Gillies RJ, Schabath MB.

Cancer Imaging. 2019 Jun 28;19(1):45. doi: 10.1186/s40644-019-0232-6.

4.

Quantitative Imaging features Improve Discrimination of Malignancy in Pulmonary nodules.

Balagurunathan Y, Schabath MB, Wang H, Liu Y, Gillies RJ.

Sci Rep. 2019 Jun 12;9(1):8528. doi: 10.1038/s41598-019-44562-z.

5.

Multiparametric MRI and Coregistered Histology Identify Tumor Habitats in Breast Cancer Mouse Models.

Jardim-Perassi BV, Huang S, Dominguez-Viqueira W, Poleszczuk J, Budzevich MM, Abdalah MA, Pillai SR, Ruiz E, Bui MM, Zuccari DAPC, Gillies RJ, Martinez GV.

Cancer Res. 2019 Aug 1;79(15):3952-3964. doi: 10.1158/0008-5472.CAN-19-0213. Epub 2019 Jun 11.

PMID:
31186232
6.

The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond.

Pastorekova S, Gillies RJ.

Cancer Metastasis Rev. 2019 Jun;38(1-2):65-77. doi: 10.1007/s10555-019-09799-0. Review.

7.

Preface.

Gillies RJ.

Cancer Metastasis Rev. 2019 Jun;38(1-2):3. doi: 10.1007/s10555-019-09798-1. No abstract available.

PMID:
31069573
8.

Erratum: Predicting clinically significant prostate cancer using DCE-MRI habitat descriptors.

Parra NA, Lu H, Li Q, Stoyanova R, Pollack A, Punnen S, Choi J, Abdalah M, Lopez C, Gage K, Park JY, Kosj Y, Pow-Sang JM, Gillies RJ, Balagurunathan Y.

Oncotarget. 2019 Mar 12;10(21):2113. doi: 10.18632/oncotarget.26802. eCollection 2019 Mar 12.

9.

Causes, consequences, and therapy of tumors acidosis.

Pillai SR, Damaghi M, Marunaka Y, Spugnini EP, Fais S, Gillies RJ.

Cancer Metastasis Rev. 2019 Jun;38(1-2):205-222. doi: 10.1007/s10555-019-09792-7. Review.

PMID:
30911978
10.

Habitats in DCE-MRI to Predict Clinically Significant Prostate Cancers.

Parra NA, Lu H, Choi J, Gage K, Pow-Sang J, Gillies RJ, Balagurunathan Y.

Tomography. 2019 Mar;5(1):68-76. doi: 10.18383/j.tom.2018.00037.

11.

Novel clinical and radiomic predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: An early report.

Tunali I, Gray JE, Qi J, Abdalah M, Jeong DK, Guvenis A, Gillies RJ, Schabath MB.

Lung Cancer. 2019 Mar;129:75-79. doi: 10.1016/j.lungcan.2019.01.010. Epub 2019 Jan 23.

PMID:
30797495
12.

Artificial intelligence in cancer imaging: Clinical challenges and applications.

Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, Allison T, Arnaout O, Abbosh C, Dunn IF, Mak RH, Tamimi RM, Tempany CM, Swanton C, Hoffmann U, Schwartz LH, Gillies RJ, Huang RY, Aerts HJWL.

CA Cancer J Clin. 2019 Mar;69(2):127-157. doi: 10.3322/caac.21552. Epub 2019 Feb 5. Review.

13.

Targeting acidity in cancer and diabetes.

Gillies RJ, Pilot C, Marunaka Y, Fais S.

Biochim Biophys Acta Rev Cancer. 2019 Apr;1871(2):273-280. doi: 10.1016/j.bbcan.2019.01.003. Epub 2019 Jan 30. Review.

PMID:
30708040
14.

In vivo positron emission tomographic blood pool imaging in an immunodeficient mouse model using 18F-fluorodeoxyglucose labeled human erythrocytes.

Choi JW, Budzevich M, Wang S, Gage K, Estrella V, Gillies RJ.

PLoS One. 2019 Jan 25;14(1):e0211012. doi: 10.1371/journal.pone.0211012. eCollection 2019.

15.

Predicting clinically significant prostate cancer using DCE-MRI habitat descriptors.

Parra NA, Lu H, Li Q, Stoyanova R, Pollack A, Punnen S, Choi J, Abdalah M, Lopez C, Gage K, Park JY, Kosj Y, Pow-Sang JM, Gillies RJ, Balagurunathan Y.

Oncotarget. 2018 Dec 14;9(98):37125-37136. doi: 10.18632/oncotarget.26437. eCollection 2018 Dec 14. Erratum in: Oncotarget. 2019 Mar 12;10(21):2113. Parra, Andres N [corrected to Parra, N Andres].

16.

Delta Radiomics Improves Pulmonary Nodule Malignancy Prediction in Lung Cancer Screening.

Alahmari SS, Cherezov D, Goldgof D, Hall L, Gillies RJ, Schabath MB.

IEEE Access. 2018;6:77796-77806. doi: 10.1109/ACCESS.2018.2884126. Epub 2018 Nov 29.

PMID:
30607311
17.

Delta radiomic features improve prediction for lung cancer incidence: A nested case-control analysis of the National Lung Screening Trial.

Cherezov D, Hawkins SH, Goldgof DB, Hall LO, Liu Y, Li Q, Balagurunathan Y, Gillies RJ, Schabath MB.

Cancer Med. 2018 Dec;7(12):6340-6356. doi: 10.1002/cam4.1852. Epub 2018 Dec 1.

18.

Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study.

Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A, Bussink J, Gillies RJ, Mak RH, Aerts HJWL.

PLoS Med. 2018 Nov 30;15(11):e1002711. doi: 10.1371/journal.pmed.1002711. eCollection 2018 Nov.

19.

Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats.

Napel S, Mu W, Jardim-Perassi BV, Aerts HJWL, Gillies RJ.

Cancer. 2018 Dec 15;124(24):4633-4649. doi: 10.1002/cncr.31630. Epub 2018 Nov 1. Review.

20.

Direct and indirect assessment of cancer metabolism explored by MRI.

Kishimoto S, Oshima N, Krishna MC, Gillies RJ.

NMR Biomed. 2018 Aug 31:e3966. doi: 10.1002/nbm.3966. [Epub ahead of print]

PMID:
30169896
21.

Systems analysis of intracellular pH vulnerabilities for cancer therapy.

Persi E, Duran-Frigola M, Damaghi M, Roush WR, Aloy P, Cleveland JL, Gillies RJ, Ruppin E.

Nat Commun. 2018 Jul 31;9(1):2997. doi: 10.1038/s41467-018-05261-x.

22.

Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow.

Gillies RJ, Brown JS, Anderson ARA, Gatenby RA.

Nat Rev Cancer. 2018 Sep;18(9):576-585. doi: 10.1038/s41568-018-0030-7. Review.

23.

Metabolic and Physiologic Imaging Biomarkers of the Tumor Microenvironment Predict Treatment Outcome with Radiation or a Hypoxia-Activated Prodrug in Mice.

Matsumoto S, Kishimoto S, Saito K, Takakusagi Y, Munasinghe JP, Devasahayam N, Hart CP, Gillies RJ, Mitchell JB, Krishna MC.

Cancer Res. 2018 Jul 15;78(14):3783-3792. doi: 10.1158/0008-5472.CAN-18-0491. Epub 2018 May 23.

24.

Perfusion MR Imaging of Breast Cancer: Insights Using "Habitat Imaging".

Gillies RJ, Balagurunathan Y.

Radiology. 2018 Jul;288(1):36-37. doi: 10.1148/radiol.2018180271. Epub 2018 May 1. No abstract available.

PMID:
29714676
25.

Prediction of pathological nodal involvement by CT-based Radiomic features of the primary tumor in patients with clinically node-negative peripheral lung adenocarcinomas.

Liu Y, Kim J, Balagurunathan Y, Hawkins S, Stringfield O, Schabath MB, Li Q, Qu F, Liu S, Garcia AL, Ye Z, Gillies RJ.

Med Phys. 2018 Jun;45(6):2518-2526. doi: 10.1002/mp.12901. Epub 2018 Apr 29.

26.

Predicting malignant nodules by fusing deep features with classical radiomics features.

Paul R, Hawkins SH, Schabath MB, Gillies RJ, Hall LO, Goldgof DB.

J Med Imaging (Bellingham). 2018 Jan;5(1):011021. doi: 10.1117/1.JMI.5.1.011021. Epub 2018 Mar 21.

27.

Hypoxia and acidosis: immune suppressors and therapeutic targets.

Damgaci S, Ibrahim-Hashim A, Enriquez-Navas PM, Pilon-Thomas S, Guvenis A, Gillies RJ.

Immunology. 2018 Jul;154(3):354-362. doi: 10.1111/imm.12917. Epub 2018 Mar 30. Review.

28.

Accounting for reconstruction kernel-induced variability in CT radiomic features using noise power spectra.

Shafiq-Ul-Hassan M, Zhang GG, Hunt DC, Latifi K, Ullah G, Gillies RJ, Moros EG.

J Med Imaging (Bellingham). 2018 Jan;5(1):011013. doi: 10.1117/1.JMI.5.1.011013. Epub 2017 Dec 14.

29.

Radial gradient and radial deviation radiomic features from pre-surgical CT scans are associated with survival among lung adenocarcinoma patients.

Tunali I, Stringfield O, Guvenis A, Wang H, Liu Y, Balagurunathan Y, Lambin P, Gillies RJ, Schabath MB.

Oncotarget. 2017 Oct 6;8(56):96013-96026. doi: 10.18632/oncotarget.21629. eCollection 2017 Nov 10.

30.

Comparison Between Radiological Semantic Features and Lung-RADS in Predicting Malignancy of Screen-Detected Lung Nodules in the National Lung Screening Trial.

Li Q, Balagurunathan Y, Liu Y, Qi J, Schabath MB, Ye Z, Gillies RJ.

Clin Lung Cancer. 2018 Mar;19(2):148-156.e3. doi: 10.1016/j.cllc.2017.10.002. Epub 2017 Oct 13.

31.

Metabolic Profiling of healthy and cancerous tissues in 2D and 3D.

Russell S, Wojtkowiak J, Neilson A, Gillies RJ.

Sci Rep. 2017 Nov 10;7(1):15285. doi: 10.1038/s41598-017-15325-5.

32.

CT imaging features associated with recurrence in non-small cell lung cancer patients after stereotactic body radiotherapy.

Li Q, Kim J, Balagurunathan Y, Qi J, Liu Y, Latifi K, Moros EG, Schabath MB, Ye Z, Gillies RJ, Dilling TJ.

Radiat Oncol. 2017 Sep 25;12(1):158. doi: 10.1186/s13014-017-0892-y.

33.

MDA-MB-231 breast cancer cells fuel osteoclast metabolism and activity: A new rationale for the pathogenesis of osteolytic bone metastases.

Lemma S, Di Pompo G, Porporato PE, Sboarina M, Russell S, Gillies RJ, Baldini N, Sonveaux P, Avnet S.

Biochim Biophys Acta Mol Basis Dis. 2017 Dec;1863(12):3254-3264. doi: 10.1016/j.bbadis.2017.08.030. Epub 2017 Sep 1.

34.

Delineation of Tumor Habitats based on Dynamic Contrast Enhanced MRI.

Chang YC, Ackerstaff E, Tschudi Y, Jimenez B, Foltz W, Fisher C, Lilge L, Cho H, Carlin S, Gillies RJ, Balagurunathan Y, Yechieli RL, Subhawong T, Turkbey B, Pollack A, Stoyanova R.

Sci Rep. 2017 Aug 29;7(1):9746. doi: 10.1038/s41598-017-09932-5.

35.

Radiologic Features of Small Pulmonary Nodules and Lung Cancer Risk in the National Lung Screening Trial: A Nested Case-Control Study.

Liu Y, Wang H, Li Q, McGettigan MJ, Balagurunathan Y, Garcia AL, Thompson ZJ, Heine JJ, Ye Z, Gillies RJ, Schabath MB.

Radiology. 2018 Jan;286(1):298-306. doi: 10.1148/radiol.2017161458. Epub 2017 Aug 24.

36.

Defining the biological basis of radiomic phenotypes in lung cancer.

Grossmann P, Stringfield O, El-Hachem N, Bui MM, Rios Velazquez E, Parmar C, Leijenaar RT, Haibe-Kains B, Lambin P, Gillies RJ, Aerts HJ.

Elife. 2017 Jul 21;6. pii: e23421. doi: 10.7554/eLife.23421.

37.

Annual Meeting of the International Society of Cancer Metabolism (ISCaM): Metabolic Networks in Cancer.

Baldini N, De Milito A, Feron O, Gillies RJ, Michiels C, Otto AM, Pastoreková S, Pedersen SF, Porporato PE, Sonveaux P, Supuran CT, Avnet S.

Front Pharmacol. 2017 Jul 4;8:411. doi: 10.3389/fphar.2017.00411. eCollection 2017.

38.

Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer.

Yip SSF, Liu Y, Parmar C, Li Q, Liu S, Qu F, Ye Z, Gillies RJ, Aerts HJWL.

Sci Rep. 2017 Jun 14;7(1):3519. doi: 10.1038/s41598-017-02425-5.

39.

Tris-base buffer: a promising new inhibitor for cancer progression and metastasis.

Ibrahim-Hashim A, Abrahams D, Enriquez-Navas PM, Luddy K, Gatenby RA, Gillies RJ.

Cancer Med. 2017 Jul;6(7):1720-1729. doi: 10.1002/cam4.1032. Epub 2017 May 29.

40.

Imaging features from pretreatment CT scans are associated with clinical outcomes in nonsmall-cell lung cancer patients treated with stereotactic body radiotherapy.

Li Q, Kim J, Balagurunathan Y, Liu Y, Latifi K, Stringfield O, Garcia A, Moros EG, Dilling TJ, Schabath MB, Ye Z, Gillies RJ.

Med Phys. 2017 Aug;44(8):4341-4349. doi: 10.1002/mp.12309. Epub 2017 Jun 24.

41.

The future of personalised radiotherapy for head and neck cancer.

Caudell JJ, Torres-Roca JF, Gillies RJ, Enderling H, Kim S, Rishi A, Moros EG, Harrison LB.

Lancet Oncol. 2017 May;18(5):e266-e273. doi: 10.1016/S1470-2045(17)30252-8. Epub 2017 Apr 26. Review.

PMID:
28456586
42.

Defining Cancer Subpopulations by Adaptive Strategies Rather Than Molecular Properties Provides Novel Insights into Intratumoral Evolution.

Ibrahim-Hashim A, Robertson-Tessi M, Enriquez-Navas PM, Damaghi M, Balagurunathan Y, Wojtkowiak JW, Russell S, Yoonseok K, Lloyd MC, Bui MM, Brown JS, Anderson ARA, Gillies RJ, Gatenby RA.

Cancer Res. 2017 May 1;77(9):2242-2254. doi: 10.1158/0008-5472.CAN-16-2844. Epub 2017 Mar 1.

43.

Multi-site quality and variability analysis of 3D FDG PET segmentations based on phantom and clinical image data.

Beichel RR, Smith BJ, Bauer C, Ulrich EJ, Ahmadvand P, Budzevich MM, Gillies RJ, Goldgof D, Grkovski M, Hamarneh G, Huang Q, Kinahan PE, Laymon CM, Mountz JM, Muzi JP, Muzi M, Nehmeh S, Oborski MJ, Tan Y, Zhao B, Sunderland JJ, Buatti JM.

Med Phys. 2017 Feb;44(2):479-496. doi: 10.1002/mp.12041.

44.

Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels.

Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, Abdalah MA, Schabath MB, Goldgof DG, Mackin D, Court LE, Gillies RJ, Moros EG.

Med Phys. 2017 Mar;44(3):1050-1062. doi: 10.1002/mp.12123.

45.

Deep Feature Transfer Learning in Combination with Traditional Features Predicts Survival Among Patients with Lung Adenocarcinoma.

Paul R, Hawkins SH, Balagurunathan Y, Schabath MB, Gillies RJ, Hall LO, Goldgof DB.

Tomography. 2016 Dec;2(4):388-395. doi: 10.18383/j.tom.2016.00211.

46.

Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-╬║B activation.

Avnet S, Di Pompo G, Chano T, Errani C, Ibrahim-Hashim A, Gillies RJ, Donati DM, Baldini N.

Int J Cancer. 2017 Mar 15;140(6):1331-1345. doi: 10.1002/ijc.30540.

47.

PET and MRI: Is the Whole Greater than the Sum of Its Parts?

Gillies RJ, Beyer T.

Cancer Res. 2016 Nov 1;76(21):6163-6166. Epub 2016 Oct 11.

48.

Imaging biomarker roadmap for cancer studies.

O'Connor JP, Aboagye EO, Adams JE, Aerts HJ, Barrington SF, Beer AJ, Boellaard R, Bohndiek SE, Brady M, Brown G, Buckley DL, Chenevert TL, Clarke LP, Collette S, Cook GJ, deSouza NM, Dickson JC, Dive C, Evelhoch JL, Faivre-Finn C, Gallagher FA, Gilbert FJ, Gillies RJ, Goh V, Griffiths JR, Groves AM, Halligan S, Harris AL, Hawkes DJ, Hoekstra OS, Huang EP, Hutton BF, Jackson EF, Jayson GC, Jones A, Koh DM, Lacombe D, Lambin P, Lassau N, Leach MO, Lee TY, Leen EL, Lewis JS, Liu Y, Lythgoe MF, Manoharan P, Maxwell RJ, Miles KA, Morgan B, Morris S, Ng T, Padhani AR, Parker GJ, Partridge M, Pathak AP, Peet AC, Punwani S, Reynolds AR, Robinson SP, Shankar LK, Sharma RA, Soloviev D, Stroobants S, Sullivan DC, Taylor SA, Tofts PS, Tozer GM, van Herk M, Walker-Samuel S, Wason J, Williams KJ, Workman P, Yankeelov TE, Brindle KM, McShane LM, Jackson A, Waterton JC.

Nat Rev Clin Oncol. 2017 Mar;14(3):169-186. doi: 10.1038/nrclinonc.2016.162. Epub 2016 Oct 11. Review.

49.

Clinical and CT characteristics of surgically resected lung adenocarcinomas harboring ALK rearrangements or EGFR mutations.

Wang H, Schabath MB, Liu Y, Han Y, Li Q, Gillies RJ, Ye Z.

Eur J Radiol. 2016 Nov;85(11):1934-1940. doi: 10.1016/j.ejrad.2016.08.023. Epub 2016 Aug 30.

50.

Improving malignancy prediction through feature selection informed by nodule size ranges in NLST.

Cherezov D, Hawkins S, Goldgof D, Hall L, Balagurunathan Y, Gillies RJ, Schabath MB.

Conf Proc IEEE Int Conf Syst Man Cybern. 2016 Oct;2016:001939-1944. doi: 10.1109/SMC.2016.7844523. Epub 2017 Feb 9.

Supplemental Content

Loading ...
Support Center