Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 21

1.

Functional inhibition of acid sphingomyelinase disrupts infection by intracellular bacterial pathogens.

Cockburn CL, Green RS, Damle SR, Martin RK, Ghahrai NN, Colonne PM, Fullerton MS, Conrad DH, Chalfant CE, Voth DE, Rucks EA, Gilk SD, Carlyon JA.

Life Sci Alliance. 2019 Mar 22;2(2). pii: e201800292. doi: 10.26508/lsa.201800292. Print 2019 Apr.

2.

Coxiella burnetii Blocks Intracellular Interleukin-17 Signaling in Macrophages.

Clemente TM, Mulye M, Justis AV, Nallandhighal S, Tran TM, Gilk SD.

Infect Immun. 2018 Sep 21;86(10). pii: e00532-18. doi: 10.1128/IAI.00532-18. Print 2018 Oct.

3.

Altering lipid droplet homeostasis affects Coxiella burnetii intracellular growth.

Mulye M, Zapata B, Gilk SD.

PLoS One. 2018 Feb 1;13(2):e0192215. doi: 10.1371/journal.pone.0192215. eCollection 2018.

4.

Measuring pH of the Coxiella burnetii Parasitophorous Vacuole.

Samanta D, Gilk SD.

Curr Protoc Microbiol. 2017 Nov 9;47:6C.3.1-6C.3.11. doi: 10.1002/cpmc.38.

PMID:
29120485
5.

Quantitative Dextran Trafficking to the Coxiella burnetii Parasitophorous Vacuole.

Winfree S, Gilk SD.

Curr Protoc Microbiol. 2017 Aug 11;46:6C.2.1-6C.2.12. doi: 10.1002/cpmc.34.

6.

Manipulation of Host Cholesterol by Obligate Intracellular Bacteria.

Samanta D, Mulye M, Clemente TM, Justis AV, Gilk SD.

Front Cell Infect Microbiol. 2017 May 5;7:165. doi: 10.3389/fcimb.2017.00165. eCollection 2017. Review.

7.

Elevated Cholesterol in the Coxiella burnetii Intracellular Niche Is Bacteriolytic.

Mulye M, Samanta D, Winfree S, Heinzen RA, Gilk SD.

MBio. 2017 Feb 28;8(1). pii: e02313-16. doi: 10.1128/mBio.02313-16.

8.

Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L.

Justis AV, Hansen B, Beare PA, King KB, Heinzen RA, Gilk SD.

Cell Microbiol. 2017 Jan;19(1). doi: 10.1111/cmi.12637. Epub 2016 Jul 15.

9.

Preventing friendly fire in the war on microbes.

Sullivan WJ Jr, Gilk SD.

Sci Transl Med. 2015 Oct 28;7(311):311fs43. doi: 10.1126/scitranslmed.aad4922.

PMID:
26511506
10.

Molecular requirement for sterols in herpes simplex virus entry and infectivity.

Wudiri GA, Pritchard SM, Li H, Liu J, Aguilar HC, Gilk SD, Nicola AV.

J Virol. 2014 Dec;88(23):13918-22. doi: 10.1128/JVI.01615-14. Epub 2014 Sep 17.

11.

Bacterial colonization of host cells in the absence of cholesterol.

Gilk SD, Cockrell DC, Luterbach C, Hansen B, Knodler LA, Ibarra JA, Steele-Mortimer O, Heinzen RA.

PLoS Pathog. 2013 Jan;9(1):e1003107. doi: 10.1371/journal.ppat.1003107. Epub 2013 Jan 24.

12.

Role of lipids in Coxiella burnetii infection.

Gilk SD.

Adv Exp Med Biol. 2012;984:199-213. doi: 10.1007/978-94-007-4315-1_10. Review.

PMID:
22711633
13.

Two systems for targeted gene deletion in Coxiella burnetii.

Beare PA, Larson CL, Gilk SD, Heinzen RA.

Appl Environ Microbiol. 2012 Jul;78(13):4580-9. doi: 10.1128/AEM.00881-12. Epub 2012 Apr 20.

14.

Targeted disruption of TgPhIL1 in Toxoplasma gondii results in altered parasite morphology and fitness.

Barkhuff WD, Gilk SD, Whitmarsh R, Tilley LD, Hunter C, Ward GE.

PLoS One. 2011;6(8):e23977. doi: 10.1371/journal.pone.0023977. Epub 2011 Aug 25.

15.

Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages.

Beare PA, Gilk SD, Larson CL, Hill J, Stead CM, Omsland A, Cockrell DC, Howe D, Voth DE, Heinzen RA.

MBio. 2011 Sep 1;2(4):e00175-11. doi: 10.1128/mBio.00175-11. Print 2011.

16.

Coxiella burnetii expresses a functional Δ24 sterol reductase.

Gilk SD, Beare PA, Heinzen RA.

J Bacteriol. 2010 Dec;192(23):6154-9. doi: 10.1128/JB.00818-10. Epub 2010 Sep 24.

17.

Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella.

Beare PA, Unsworth N, Andoh M, Voth DE, Omsland A, Gilk SD, Williams KP, Sobral BW, Kupko JJ 3rd, Porcella SF, Samuel JE, Heinzen RA.

Infect Immun. 2009 Feb;77(2):642-56. doi: 10.1128/IAI.01141-08. Epub 2008 Dec 1.

18.

GAP45 phosphorylation controls assembly of the Toxoplasma myosin XIV complex.

Gilk SD, Gaskins E, Ward GE, Beckers CJ.

Eukaryot Cell. 2009 Feb;8(2):190-6. doi: 10.1128/EC.00201-08. Epub 2008 Dec 1.

19.
20.

Variable tick protein in two genomic groups of the relapsing fever spirochete Borrelia hermsii in western North America.

Porcella SF, Raffel SJ, Anderson DE Jr, Gilk SD, Bono JL, Schrumpf ME, Schwan TG.

Infect Immun. 2005 Oct;73(10):6647-58.

21.

Supplemental Content

Support Center