Format
Sort by

Send to

Choose Destination

Search results

Items: 5

1.

Genome-Scale, Constraint-Based Modeling of Nitrogen Oxide Fluxes during Coculture of Nitrosomonas europaea and Nitrobacter winogradskyi.

Mellbye BL, Giguere AT, Murthy GS, Bottomley PJ, Sayavedra-Soto LA, Chaplen FWR.

mSystems. 2018 Mar 13;3(3). pii: e00170-17. doi: 10.1128/mSystems.00170-17. eCollection 2018 May-Jun.

2.

Nitrite-oxidizing activity responds to nitrite accumulation in soil.

Giguere AT, Taylor AE, Myrold DD, Mellbye BL, Sayavedra-Soto LA, Bottomley PJ.

FEMS Microbiol Ecol. 2018 Mar 1;94(3). doi: 10.1093/femsec/fiy008.

PMID:
29360963
3.

Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria.

Taylor AE, Giguere AT, Zoebelein CM, Myrold DD, Bottomley PJ.

ISME J. 2017 Apr;11(4):896-908. doi: 10.1038/ismej.2016.179. Epub 2016 Dec 20.

4.

Quorum Quenching of Nitrobacter winogradskyi Suggests that Quorum Sensing Regulates Fluxes of Nitrogen Oxide(s) during Nitrification.

Mellbye BL, Giguere AT, Bottomley PJ, Sayavedra-Soto LA.

MBio. 2016 Oct 25;7(5). pii: e01753-16. doi: 10.1128/mBio.01753-16.

5.

Use of aliphatic n-alkynes to discriminate soil nitrification activities of ammonia-oxidizing thaumarchaea and bacteria.

Taylor AE, Vajrala N, Giguere AT, Gitelman AI, Arp DJ, Myrold DD, Sayavedra-Soto L, Bottomley PJ.

Appl Environ Microbiol. 2013 Nov;79(21):6544-51. doi: 10.1128/AEM.01928-13. Epub 2013 Aug 16.

Supplemental Content

Loading ...
Support Center