Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 23

1.

Engineered Interspecies Amino Acid Cross-Feeding Increases Population Evenness in a Synthetic Bacterial Consortium.

Ziesack M, Gibson T, Oliver JKW, Shumaker AM, Hsu BB, Riglar DT, Giessen TW, DiBenedetto NV, Bry L, Way JC, Silver PA, Gerber GK.

mSystems. 2019 Aug 13;4(4). pii: e00352-19. doi: 10.1128/mSystems.00352-19.

2.

Large protein organelles form a new iron sequestration system with high storage capacity.

Giessen TW, Orlando BJ, Verdegaal AA, Chambers MG, Gardener J, Bell DC, Birrane G, Liao M, Silver PA.

Elife. 2019 Jul 8;8. pii: e46070. doi: 10.7554/eLife.46070.

3.

A Synthetic System That Senses Candida albicans and Inhibits Virulence Factors.

Tscherner M, Giessen TW, Markey L, Kumamoto CA, Silver PA.

ACS Synth Biol. 2019 Feb 15;8(2):434-444. doi: 10.1021/acssynbio.8b00457. Epub 2019 Jan 16.

PMID:
30608638
4.

Prokaryotic nanocompartments form synthetic organelles in a eukaryote.

Lau YH, Giessen TW, Altenburg WJ, Silver PA.

Nat Commun. 2018 Apr 3;9(1):1311. doi: 10.1038/s41467-018-03768-x.

5.

Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation.

Riglar DT, Giessen TW, Baym M, Kerns SJ, Niederhuber MJ, Bronson RT, Kotula JW, Gerber GK, Way JC, Silver PA.

Nat Biotechnol. 2017 Jul;35(7):653-658. doi: 10.1038/nbt.3879. Epub 2017 May 29.

6.

Widespread distribution of encapsulin nanocompartments reveals functional diversity.

Giessen TW, Silver PA.

Nat Microbiol. 2017 Mar 6;2:17029. doi: 10.1038/nmicrobiol.2017.29.

PMID:
28263314
7.

Engineering carbon fixation with artificial protein organelles.

Giessen TW, Silver PA.

Curr Opin Biotechnol. 2017 Aug;46:42-50. doi: 10.1016/j.copbio.2017.01.004. Epub 2017 Jan 23. Review.

PMID:
28126670
8.

Engineering Genetically-Encoded Mineralization and Magnetism via Directed Evolution.

Liu X, Lopez PA, Giessen TW, Giles M, Way JC, Silver PA.

Sci Rep. 2016 Nov 29;6:38019. doi: 10.1038/srep38019.

9.

A Catalytic Nanoreactor Based on in Vivo Encapsulation of Multiple Enzymes in an Engineered Protein Nanocompartment.

Giessen TW, Silver PA.

Chembiochem. 2016 Oct 17;17(20):1931-1935. doi: 10.1002/cbic.201600431. Epub 2016 Sep 14.

PMID:
27504846
10.

Converting a Natural Protein Compartment into a Nanofactory for the Size-Constrained Synthesis of Antimicrobial Silver Nanoparticles.

Giessen TW, Silver PA.

ACS Synth Biol. 2016 Dec 16;5(12):1497-1504. Epub 2016 Jun 17.

PMID:
27276075
11.

Encapsulins: microbial nanocompartments with applications in biomedicine, nanobiotechnology and materials science.

Giessen TW.

Curr Opin Chem Biol. 2016 Oct;34:1-10. doi: 10.1016/j.cbpa.2016.05.013. Epub 2016 May 25. Review.

PMID:
27232770
12.

Encapsulation as a Strategy for the Design of Biological Compartmentalization.

Giessen TW, Silver PA.

J Mol Biol. 2016 Feb 27;428(5 Pt B):916-27. doi: 10.1016/j.jmb.2015.09.009. Epub 2015 Sep 25. Review.

PMID:
26403362
13.

Rational and combinatorial tailoring of bioactive cyclic dipeptides.

Giessen TW, Marahiel MA.

Front Microbiol. 2015 Jul 30;6:785. doi: 10.3389/fmicb.2015.00785. eCollection 2015. Review.

14.

A synthetic adenylation-domain-based tRNA-aminoacylation catalyst.

Giessen TW, Altegoer F, Nebel AJ, Steinbach RM, Bange G, Marahiel MA.

Angew Chem Int Ed Engl. 2015 Feb 16;54(8):2492-6. doi: 10.1002/anie.201410047. Epub 2015 Jan 12.

PMID:
25583137
15.

The tRNA-dependent biosynthesis of modified cyclic dipeptides.

Giessen TW, Marahiel MA.

Int J Mol Sci. 2014 Aug 21;15(8):14610-31. doi: 10.3390/ijms150814610. Review.

16.

Insights into the generation of structural diversity in a tRNA-dependent pathway for highly modified bioactive cyclic dipeptides.

Giessen TW, von Tesmar AM, Marahiel MA.

Chem Biol. 2013 Jun 20;20(6):828-38. doi: 10.1016/j.chembiol.2013.04.017.

17.

A tRNA-dependent two-enzyme pathway for the generation of singly and doubly methylated ditryptophan 2,5-diketopiperazines.

Giessen TW, von Tesmar AM, Marahiel MA.

Biochemistry. 2013 Jun 18;52(24):4274-83. doi: 10.1021/bi4004827. Epub 2013 Jun 7.

PMID:
23705796
18.

Two [4Fe-4S] clusters containing radical SAM enzyme SkfB catalyze thioether bond formation during the maturation of the sporulation killing factor.

Fl├╝he L, Burghaus O, Wieckowski BM, Giessen TW, Linne U, Marahiel MA.

J Am Chem Soc. 2013 Jan 23;135(3):959-62. doi: 10.1021/ja310542g. Epub 2013 Jan 9.

PMID:
23282011
19.

Isolation, structure elucidation, and biosynthesis of an unusual hydroxamic acid ester-containing siderophore from Actinosynnema mirum.

Giessen TW, Franke KB, Knappe TA, Kraas FI, Bosello M, Xie X, Linne U, Marahiel MA.

J Nat Prod. 2012 May 25;75(5):905-14. doi: 10.1021/np300046k. Epub 2012 May 11.

PMID:
22578145
20.

An enzymatic pathway for the biosynthesis of the formylhydroxyornithine required for rhodochelin iron coordination.

Bosello M, Mielcarek A, Giessen TW, Marahiel MA.

Biochemistry. 2012 Apr 10;51(14):3059-66. doi: 10.1021/bi201837f. Epub 2012 Mar 30.

PMID:
22439765
21.

Ribosome-independent biosynthesis of biologically active peptides: Application of synthetic biology to generate structural diversity.

Giessen TW, Marahiel MA.

FEBS Lett. 2012 Jul 16;586(15):2065-75. doi: 10.1016/j.febslet.2012.01.017. Epub 2012 Jan 21. Review.

22.

Exploring the mechanism of lipid transfer during biosynthesis of the acidic lipopeptide antibiotic CDA.

Kraas FI, Giessen TW, Marahiel MA.

FEBS Lett. 2012 Feb 3;586(3):283-8. doi: 10.1016/j.febslet.2012.01.003. Epub 2012 Jan 10.

23.

A four-enzyme pathway for 3,5-dihydroxy-4-methylanthranilic acid formation and incorporation into the antitumor antibiotic sibiromycin.

Giessen TW, Kraas FI, Marahiel MA.

Biochemistry. 2011 Jun 28;50(25):5680-92. doi: 10.1021/bi2006114. Epub 2011 Jun 3.

PMID:
21612226

Supplemental Content

Loading ...
Support Center