Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 21

1.

A Synthetic System That Senses Candida albicans and Inhibits Virulence Factors.

Tscherner M, Giessen TW, Markey L, Kumamoto CA, Silver PA.

ACS Synth Biol. 2019 Feb 15;8(2):434-444. doi: 10.1021/acssynbio.8b00457. Epub 2019 Jan 16.

PMID:
30608638
2.

Prokaryotic nanocompartments form synthetic organelles in a eukaryote.

Lau YH, Giessen TW, Altenburg WJ, Silver PA.

Nat Commun. 2018 Apr 3;9(1):1311. doi: 10.1038/s41467-018-03768-x.

3.

Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation.

Riglar DT, Giessen TW, Baym M, Kerns SJ, Niederhuber MJ, Bronson RT, Kotula JW, Gerber GK, Way JC, Silver PA.

Nat Biotechnol. 2017 Jul;35(7):653-658. doi: 10.1038/nbt.3879. Epub 2017 May 29.

4.

Widespread distribution of encapsulin nanocompartments reveals functional diversity.

Giessen TW, Silver PA.

Nat Microbiol. 2017 Mar 6;2:17029. doi: 10.1038/nmicrobiol.2017.29.

PMID:
28263314
5.

Engineering carbon fixation with artificial protein organelles.

Giessen TW, Silver PA.

Curr Opin Biotechnol. 2017 Aug;46:42-50. doi: 10.1016/j.copbio.2017.01.004. Epub 2017 Jan 23. Review.

PMID:
28126670
6.

Engineering Genetically-Encoded Mineralization and Magnetism via Directed Evolution.

Liu X, Lopez PA, Giessen TW, Giles M, Way JC, Silver PA.

Sci Rep. 2016 Nov 29;6:38019. doi: 10.1038/srep38019.

7.

A Catalytic Nanoreactor Based on in Vivo Encapsulation of Multiple Enzymes in an Engineered Protein Nanocompartment.

Giessen TW, Silver PA.

Chembiochem. 2016 Oct 17;17(20):1931-1935. doi: 10.1002/cbic.201600431. Epub 2016 Sep 14.

PMID:
27504846
8.

Converting a Natural Protein Compartment into a Nanofactory for the Size-Constrained Synthesis of Antimicrobial Silver Nanoparticles.

Giessen TW, Silver PA.

ACS Synth Biol. 2016 Dec 16;5(12):1497-1504. Epub 2016 Jun 17.

PMID:
27276075
9.

Encapsulins: microbial nanocompartments with applications in biomedicine, nanobiotechnology and materials science.

Giessen TW.

Curr Opin Chem Biol. 2016 Oct;34:1-10. doi: 10.1016/j.cbpa.2016.05.013. Epub 2016 May 25. Review.

PMID:
27232770
10.

Encapsulation as a Strategy for the Design of Biological Compartmentalization.

Giessen TW, Silver PA.

J Mol Biol. 2016 Feb 27;428(5 Pt B):916-27. doi: 10.1016/j.jmb.2015.09.009. Epub 2015 Sep 25. Review.

PMID:
26403362
11.

Rational and combinatorial tailoring of bioactive cyclic dipeptides.

Giessen TW, Marahiel MA.

Front Microbiol. 2015 Jul 30;6:785. doi: 10.3389/fmicb.2015.00785. eCollection 2015. Review.

12.

A synthetic adenylation-domain-based tRNA-aminoacylation catalyst.

Giessen TW, Altegoer F, Nebel AJ, Steinbach RM, Bange G, Marahiel MA.

Angew Chem Int Ed Engl. 2015 Feb 16;54(8):2492-6. doi: 10.1002/anie.201410047. Epub 2015 Jan 12.

PMID:
25583137
13.

The tRNA-dependent biosynthesis of modified cyclic dipeptides.

Giessen TW, Marahiel MA.

Int J Mol Sci. 2014 Aug 21;15(8):14610-31. doi: 10.3390/ijms150814610. Review.

14.

Insights into the generation of structural diversity in a tRNA-dependent pathway for highly modified bioactive cyclic dipeptides.

Giessen TW, von Tesmar AM, Marahiel MA.

Chem Biol. 2013 Jun 20;20(6):828-38. doi: 10.1016/j.chembiol.2013.04.017.

15.

A tRNA-dependent two-enzyme pathway for the generation of singly and doubly methylated ditryptophan 2,5-diketopiperazines.

Giessen TW, von Tesmar AM, Marahiel MA.

Biochemistry. 2013 Jun 18;52(24):4274-83. doi: 10.1021/bi4004827. Epub 2013 Jun 7.

PMID:
23705796
16.

Two [4Fe-4S] clusters containing radical SAM enzyme SkfB catalyze thioether bond formation during the maturation of the sporulation killing factor.

Fl├╝he L, Burghaus O, Wieckowski BM, Giessen TW, Linne U, Marahiel MA.

J Am Chem Soc. 2013 Jan 23;135(3):959-62. doi: 10.1021/ja310542g. Epub 2013 Jan 9.

PMID:
23282011
17.

Isolation, structure elucidation, and biosynthesis of an unusual hydroxamic acid ester-containing siderophore from Actinosynnema mirum.

Giessen TW, Franke KB, Knappe TA, Kraas FI, Bosello M, Xie X, Linne U, Marahiel MA.

J Nat Prod. 2012 May 25;75(5):905-14. doi: 10.1021/np300046k. Epub 2012 May 11.

PMID:
22578145
18.

An enzymatic pathway for the biosynthesis of the formylhydroxyornithine required for rhodochelin iron coordination.

Bosello M, Mielcarek A, Giessen TW, Marahiel MA.

Biochemistry. 2012 Apr 10;51(14):3059-66. doi: 10.1021/bi201837f. Epub 2012 Mar 30.

PMID:
22439765
19.

Ribosome-independent biosynthesis of biologically active peptides: Application of synthetic biology to generate structural diversity.

Giessen TW, Marahiel MA.

FEBS Lett. 2012 Jul 16;586(15):2065-75. doi: 10.1016/j.febslet.2012.01.017. Epub 2012 Jan 21. Review.

20.

Exploring the mechanism of lipid transfer during biosynthesis of the acidic lipopeptide antibiotic CDA.

Kraas FI, Giessen TW, Marahiel MA.

FEBS Lett. 2012 Feb 3;586(3):283-8. doi: 10.1016/j.febslet.2012.01.003. Epub 2012 Jan 10.

21.

A four-enzyme pathway for 3,5-dihydroxy-4-methylanthranilic acid formation and incorporation into the antitumor antibiotic sibiromycin.

Giessen TW, Kraas FI, Marahiel MA.

Biochemistry. 2011 Jun 28;50(25):5680-92. doi: 10.1021/bi2006114. Epub 2011 Jun 3.

PMID:
21612226

Supplemental Content

Loading ...
Support Center