Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 64

1.

Confocal and multiphoton calcium imaging of the enteric nervous system in anesthetized mice.

Motegi Y, Sato M, Horiguchi K, Ohkura M, Gengyo-Ando K, Ikegaya Y, Fusamae Y, Hongo Y, Suzuki M, Ogawa K, Takaki M, Nakai J.

Neurosci Res. 2019 Feb 18. pii: S0168-0102(18)30523-6. doi: 10.1016/j.neures.2019.02.004. [Epub ahead of print]

PMID:
30790590
2.

UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase is indispensable for oogenesis, oocyte-to-embryo transition, and larval development of the nematode Caenorhabditis elegans.

Kanaki N, Matsuda A, Dejima K, Murata D, Nomura KH, Ohkura T, Gengyo-Ando K, Yoshina S, Mitani S, Nomura K.

Glycobiology. 2019 Feb 1;29(2):163-178. doi: 10.1093/glycob/cwy104.

3.

Role of tyramine in calcium dynamics of GABAergic neurons and escape behavior in Caenorhabditis elegans.

Kagawa-Nagamura Y, Gengyo-Ando K, Ohkura M, Nakai J.

Zoological Lett. 2018 Jul 26;4:19. doi: 10.1186/s40851-018-0103-1. eCollection 2018.

4.

Fast varifocal two-photon microendoscope for imaging neuronal activity in the deep brain.

Sato M, Motegi Y, Yagi S, Gengyo-Ando K, Ohkura M, Nakai J.

Biomed Opt Express. 2017 Aug 10;8(9):4049-4060. doi: 10.1364/BOE.8.004049. eCollection 2017 Sep 1.

5.

Calcium dynamics regulating the timing of decision-making in C. elegans.

Tanimoto Y, Yamazoe-Umemoto A, Fujita K, Kawazoe Y, Miyanishi Y, Yamazaki SJ, Fei X, Busch KE, Gengyo-Ando K, Nakai J, Iino Y, Iwasaki Y, Hashimoto K, Kimura KD.

Elife. 2017 May 23;6. pii: e21629. doi: 10.7554/eLife.21629.

6.

A new platform for long-term tracking and recording of neural activity and simultaneous optogenetic control in freely behaving Caenorhabditis elegans.

Gengyo-Ando K, Kagawa-Nagamura Y, Ohkura M, Fei X, Chen M, Hashimoto K, Nakai J.

J Neurosci Methods. 2017 Jul 15;286:56-68. doi: 10.1016/j.jneumeth.2017.05.017. Epub 2017 May 12.

PMID:
28506879
7.

Distinct roles of the two VPS33 proteins in the endolysosomal system in Caenorhabditis elegans.

Gengyo-Ando K, Kage-Nakadai E, Yoshina S, Otori M, Kagawa-Nagamura Y, Nakai J, Mitani S.

Traffic. 2016 Nov;17(11):1197-1213. doi: 10.1111/tra.12430. Epub 2016 Oct 3.

8.

Characterization of HAF-4- and HAF-9-localizing organelles as distinct organelles in Caenorhabditis elegans intestinal cells.

Tanji T, Nishikori K, Haga S, Kanno Y, Kobayashi Y, Takaya M, Gengyo-Ando K, Mitani S, Shiraishi H, Ohashi-Kobayashi A.

BMC Cell Biol. 2016 Jan 27;17:4. doi: 10.1186/s12860-015-0076-2.

9.

REI-1 Is a Guanine Nucleotide Exchange Factor Regulating RAB-11 Localization and Function in C. elegans Embryos.

Sakaguchi A, Sato M, Sato K, Gengyo-Ando K, Yorimitsu T, Nakai J, Hara T, Sato K, Sato K.

Dev Cell. 2015 Oct 26;35(2):211-21. doi: 10.1016/j.devcel.2015.09.013.

10.

Generation and Imaging of Transgenic Mice that Express G-CaMP7 under a Tetracycline Response Element.

Sato M, Kawano M, Ohkura M, Gengyo-Ando K, Nakai J, Hayashi Y.

PLoS One. 2015 May 6;10(5):e0125354. doi: 10.1371/journal.pone.0125354. eCollection 2015.

11.

Rational design of a high-affinity, fast, red calcium indicator R-CaMP2.

Inoue M, Takeuchi A, Horigane S, Ohkura M, Gengyo-Ando K, Fujii H, Kamijo S, Takemoto-Kimura S, Kano M, Nakai J, Kitamura K, Bito H.

Nat Methods. 2015 Jan;12(1):64-70. doi: 10.1038/nmeth.3185. Epub 2014 Nov 24.

PMID:
25419959
12.

Amino- and carboxyl-terminal domains of Filamin-A interact with CRMP1 to mediate Sema3A signalling.

Nakamura F, Kumeta K, Hida T, Isono T, Nakayama Y, Kuramata-Matsuoka E, Yamashita N, Uchida Y, Ogura K, Gengyo-Ando K, Mitani S, Ogino T, Goshima Y.

Nat Commun. 2014 Oct 31;5:5325. doi: 10.1038/ncomms6325.

PMID:
25358863
13.

Arl8/ARL-8 functions in apoptotic cell removal by mediating phagolysosome formation in Caenorhabditis elegans.

Sasaki A, Nakae I, Nagasawa M, Hashimoto K, Abe F, Saito K, Fukuyama M, Gengyo-Ando K, Mitani S, Katada T, Kontani K.

Mol Biol Cell. 2013 May;24(10):1584-92. doi: 10.1091/mbc.E12-08-0628. Epub 2013 Mar 13.

14.

Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals.

Ohkura M, Sasaki T, Sadakari J, Gengyo-Ando K, Kagawa-Nagamura Y, Kobayashi C, Ikegaya Y, Nakai J.

PLoS One. 2012;7(12):e51286. doi: 10.1371/journal.pone.0051286. Epub 2012 Dec 11.

15.

A Caenorhabditis elegans insulin-like peptide, INS-17: its physiological function and expression pattern.

Matsunaga Y, Nakajima K, Gengyo-Ando K, Mitani S, Iwasaki T, Kawano T.

Biosci Biotechnol Biochem. 2012;76(11):2168-72. Epub 2012 Nov 7.

16.

Neuronally expressed Ras-family GTPase Di-Ras modulates synaptic activity in Caenorhabditis elegans.

Tada M, Gengyo-Ando K, Kobayashi T, Fukuyama M, Mitani S, Kontani K, Katada T.

Genes Cells. 2012 Sep;17(9):778-89. doi: 10.1111/j.1365-2443.2012.01627.x. Epub 2012 Aug 16.

17.

Depletion of mboa-7, an enzyme that incorporates polyunsaturated fatty acids into phosphatidylinositol (PI), impairs PI 3-phosphate signaling in Caenorhabditis elegans.

Lee HC, Kubo T, Kono N, Kage-Nakadai E, Gengyo-Ando K, Mitani S, Inoue T, Arai H.

Genes Cells. 2012 Sep;17(9):748-57. doi: 10.1111/j.1365-2443.2012.01624.x. Epub 2012 Aug 1.

18.

Physiological function, expression pattern, and transcriptional regulation of a Caenorhabditis elegans insulin-like peptide, INS-18.

Matsunaga Y, Gengyo-Ando K, Mitani S, Iwasaki T, Kawano T.

Biochem Biophys Res Commun. 2012 Jul 6;423(3):478-83. doi: 10.1016/j.bbrc.2012.05.145. Epub 2012 Jun 5.

PMID:
22683638
19.

Identification of a novel ADAMTS9/GON-1 function for protein transport from the ER to the Golgi.

Yoshina S, Sakaki K, Yonezumi-Hayashi A, Gengyo-Ando K, Inoue H, Iino Y, Mitani S.

Mol Biol Cell. 2012 May;23(9):1728-41. doi: 10.1091/mbc.E11-10-0857. Epub 2012 Mar 14.

20.

GPI-anchor synthesis is indispensable for the germline development of the nematode Caenorhabditis elegans.

Murata D, Nomura KH, Dejima K, Mizuguchi S, Kawasaki N, Matsuishi-Nakajima Y, Ito S, Gengyo-Ando K, Kage-Nakadai E, Mitani S, Nomura K.

Mol Biol Cell. 2012 Mar;23(6):982-95. doi: 10.1091/mbc.E10-10-0855. Epub 2012 Feb 1.

21.

Single/low-copy integration of transgenes in Caenorhabditis elegans using an ultraviolet trimethylpsoralen method.

Kage-Nakadai E, Kobuna H, Funatsu O, Otori M, Gengyo-Ando K, Yoshina S, Hori S, Mitani S.

BMC Biotechnol. 2012 Jan 5;12:1. doi: 10.1186/1472-6750-12-1.

22.

Ceramide glucosyltransferase of the nematode Caenorhabditis elegans is involved in oocyte formation and in early embryonic cell division.

Nomura KH, Murata D, Hayashi Y, Dejima K, Mizuguchi S, Kage-Nakadai E, Gengyo-Ando K, Mitani S, Hirabayashi Y, Ito M, Nomura K.

Glycobiology. 2011 Jun;21(6):834-48. doi: 10.1093/glycob/cwr019. Epub 2011 Feb 16.

PMID:
21325339
23.

Multivesicular body formation requires OSBP-related proteins and cholesterol.

Kobuna H, Inoue T, Shibata M, Gengyo-Ando K, Yamamoto A, Mitani S, Arai H.

PLoS Genet. 2010 Aug 5;6(8). pii: e1001055. doi: 10.1371/journal.pgen.1001055.

24.

An Arf-like small G protein, ARL-8, promotes the axonal transport of presynaptic cargoes by suppressing vesicle aggregation.

Klassen MP, Wu YE, Maeder CI, Nakae I, Cueva JG, Lehrman EK, Tada M, Gengyo-Ando K, Wang GJ, Goodman M, Mitani S, Kontani K, Katada T, Shen K.

Neuron. 2010 Jun 10;66(5):710-23. doi: 10.1016/j.neuron.2010.04.033.

25.

Two Golgi-resident 3'-Phosphoadenosine 5'-phosphosulfate transporters play distinct roles in heparan sulfate modifications and embryonic and larval development in Caenorhabditis elegans.

Dejima K, Murata D, Mizuguchi S, Nomura KH, Izumikawa T, Kitagawa H, Gengyo-Ando K, Yoshina S, Ichimiya T, Nishihara S, Mitani S, Nomura K.

J Biol Chem. 2010 Aug 6;285(32):24717-28. doi: 10.1074/jbc.M109.088229. Epub 2010 Jun 6.

26.

The arf-like GTPase Arl8 mediates delivery of endocytosed macromolecules to lysosomes in Caenorhabditis elegans.

Nakae I, Fujino T, Kobayashi T, Sasaki A, Kikko Y, Fukuyama M, Gengyo-Ando K, Mitani S, Kontani K, Katada T.

Mol Biol Cell. 2010 Jul 15;21(14):2434-42. doi: 10.1091/mbc.E09-12-1010. Epub 2010 May 19.

27.

Protein phosphatase 2A cooperates with the autophagy-related kinase UNC-51 to regulate axon guidance in Caenorhabditis elegans.

Ogura K, Okada T, Mitani S, Gengyo-Ando K, Baillie DL, Kohara Y, Goshima Y.

Development. 2010 May;137(10):1657-67. doi: 10.1242/dev.050708. Epub 2010 Apr 14.

28.

Two very long chain fatty acid acyl-CoA synthetase genes, acs-20 and acs-22, have roles in the cuticle surface barrier in Caenorhabditis elegans.

Kage-Nakadai E, Kobuna H, Kimura M, Gengyo-Ando K, Inoue T, Arai H, Mitani S.

PLoS One. 2010 Jan 25;5(1):e8857. doi: 10.1371/journal.pone.0008857.

29.

FLR-2, the glycoprotein hormone alpha subunit, is involved in the neural control of intestinal functions in Caenorhabditis elegans.

Oishi A, Gengyo-Ando K, Mitani S, Mohri-Shiomi A, Kimura KD, Ishihara T, Katsura I.

Genes Cells. 2009 Oct;14(10):1141-54. doi: 10.1111/j.1365-2443.2009.01341.x. Epub 2009 Sep 7.

30.

A Caenorhabditis elegans glycolipid-binding galectin functions in host defense against bacterial infection.

Ideo H, Fukushima K, Gengyo-Ando K, Mitani S, Dejima K, Nomura K, Yamashita K.

J Biol Chem. 2009 Sep 25;284(39):26493-501. doi: 10.1074/jbc.M109.038257. Epub 2009 Jul 27.

31.

Functional analysis of GS28, an intra-Golgi SNARE, in Caenorhabditis elegans.

Maekawa M, Inoue T, Kobuna H, Nishimura T, Gengyo-Ando K, Mitani S, Arai H.

Genes Cells. 2009 Aug;14(8):1003-13. doi: 10.1111/j.1365-2443.2009.01325.x. Epub 2009 Jul 17.

32.

Normal formation of a subset of intestinal granules in Caenorhabditis elegans requires ATP-binding cassette transporters HAF-4 and HAF-9, which are highly homologous to human lysosomal peptide transporter TAP-like.

Kawai H, Tanji T, Shiraishi H, Yamada M, Iijima R, Inoue T, Kezuka Y, Ohashi K, Yoshida Y, Tohyama K, Gengyo-Ando K, Mitani S, Arai H, Ohashi-Kobayashi A, Maeda M.

Mol Biol Cell. 2009 Jun;20(12):2979-90. doi: 10.1091/mbc.E08-09-0912. Epub 2009 Apr 29.

33.

The ortholog of human solute carrier family 35 member B1 (UDP-galactose transporter-related protein 1) is involved in maintenance of ER homeostasis and essential for larval development in Caenorhabditis elegans.

Dejima K, Murata D, Mizuguchi S, Nomura KH, Gengyo-Ando K, Mitani S, Kamiyama S, Nishihara S, Nomura K.

FASEB J. 2009 Jul;23(7):2215-25. doi: 10.1096/fj.08-123737. Epub 2009 Mar 6.

34.

Member of the membrane-bound O-acyltransferase (MBOAT) family encodes a lysophospholipid acyltransferase with broad substrate specificity.

Matsuda S, Inoue T, Lee HC, Kono N, Tanaka F, Gengyo-Ando K, Mitani S, Arai H.

Genes Cells. 2008 Aug;13(8):879-88. doi: 10.1111/j.1365-2443.2008.01212.x.

35.

Beta-catenin asymmetry is regulated by PLA1 and retrograde traffic in C. elegans stem cell divisions.

Kanamori T, Inoue T, Sakamoto T, Gengyo-Ando K, Tsujimoto M, Mitani S, Sawa H, Aoki J, Arai H.

EMBO J. 2008 Jun 18;27(12):1647-57. doi: 10.1038/emboj.2008.102. Epub 2008 May 22.

36.

Role of C. elegans TAT-1 protein in maintaining plasma membrane phosphatidylserine asymmetry.

Darland-Ransom M, Wang X, Sun CL, Mapes J, Gengyo-Ando K, Mitani S, Xue D.

Science. 2008 Apr 25;320(5875):528-31. doi: 10.1126/science.1155847.

37.

Caenorhabditis elegans mboa-7, a member of the MBOAT family, is required for selective incorporation of polyunsaturated fatty acids into phosphatidylinositol.

Lee HC, Inoue T, Imae R, Kono N, Shirae S, Matsuda S, Gengyo-Ando K, Mitani S, Arai H.

Mol Biol Cell. 2008 Mar;19(3):1174-84. Epub 2007 Dec 19.

38.
39.

IFT-81 and IFT-74 are required for intraflagellar transport in C. elegans.

Kobayashi T, Gengyo-Ando K, Ishihara T, Katsura I, Mitani S.

Genes Cells. 2007 May;12(5):593-602.

40.

The PLEXIN PLX-2 and the ephrin EFN-4 have distinct roles in MAB-20/Semaphorin 2A signaling in Caenorhabditis elegans morphogenesis.

Nakao F, Hudson ML, Suzuki M, Peckler Z, Kurokawa R, Liu Z, Gengyo-Ando K, Nukazuka A, Fujii T, Suto F, Shibata Y, Shioi G, Fujisawa H, Mitani S, Chisholm AD, Takagi S.

Genetics. 2007 Jul;176(3):1591-607. Epub 2007 May 16.

41.

C. elegans mitochondrial factor WAH-1 promotes phosphatidylserine externalization in apoptotic cells through phospholipid scramblase SCRM-1.

Wang X, Wang J, Gengyo-Ando K, Gu L, Sun CL, Yang C, Shi Y, Kobayashi T, Shi Y, Mitani S, Xie XS, Xue D.

Nat Cell Biol. 2007 May;9(5):541-9. Epub 2007 Apr 1.

PMID:
17401362
42.

Expression of rib-1, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes, is indispensable for heparan sulfate synthesis and embryonic morphogenesis.

Kitagawa H, Izumikawa T, Mizuguchi S, Dejima K, Nomura KH, Egusa N, Taniguchi F, Tamura J, Gengyo-Ando K, Mitani S, Nomura K, Sugahara K.

J Biol Chem. 2007 Mar 16;282(11):8533-44. Epub 2007 Jan 19.

43.

The SM protein VPS-45 is required for RAB-5-dependent endocytic transport in Caenorhabditis elegans.

Gengyo-Ando K, Kuroyanagi H, Kobayashi T, Murate M, Fujimoto K, Okabe S, Mitani S.

EMBO Rep. 2007 Feb;8(2):152-7. Epub 2007 Jan 19.

44.

ASB-1, a germline-specific isoform of mitochondrial ATP synthase b subunit, is required to maintain the rate of germline development in Caenorhabditis elegans.

Kawasaki I, Hanazawa M, Gengyo-Ando K, Mitani S, Maruyama I, Iino Y.

Mech Dev. 2007 Mar;124(3):237-51. Epub 2006 Dec 3.

45.

Disruption of ins-11, a Caenorhabditis elegans insulin-like gene, and phenotypic analyses of the gene-disrupted animal.

Kawano T, Nagatomo R, Kimura Y, Gengyo-Ando K, Mitani S.

Biosci Biotechnol Biochem. 2006 Dec;70(12):3084-7. Epub 2006 Dec 7.

46.

An efficient transgenic system by TA cloning vectors and RNAi for C. elegans.

Gengyo-Ando K, Yoshina S, Inoue H, Mitani S.

Biochem Biophys Res Commun. 2006 Nov 3;349(4):1345-50. Epub 2006 Sep 11.

PMID:
16979594
47.

Essential roles of 3'-phosphoadenosine 5'-phosphosulfate synthase in embryonic and larval development of the nematode Caenorhabditis elegans.

Dejima K, Seko A, Yamashita K, Gengyo-Ando K, Mitani S, Izumikawa T, Kitagawa H, Sugahara K, Mizuguchi S, Nomura K.

J Biol Chem. 2006 Apr 21;281(16):11431-40. Epub 2006 Feb 23.

48.

Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans.

Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H, Tsunoda M, Mitani S, Iwatsubo T.

J Biol Chem. 2006 Jan 6;281(1):334-40. Epub 2005 Oct 31.

49.

Progressive neurodegeneration in C. elegans model of tauopathy.

Miyasaka T, Ding Z, Gengyo-Ando K, Oue M, Yamaguchi H, Mitani S, Ihara Y.

Neurobiol Dis. 2005 Nov;20(2):372-83.

PMID:
16242642
50.

Control of body size by SMA-5, a homolog of MAP kinase BMK1/ERK5, in C. elegans.

Watanabe N, Nagamatsu Y, Gengyo-Ando K, Mitani S, Ohshima Y.

Development. 2005 Jul;132(14):3175-84. Epub 2005 Jun 8.

Supplemental Content

Loading ...
Support Center