Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

Novel Microbial Modification Tools to Convert Lipids into Other Value-Added Products.

Kumari P, Yusuf F, Gaur NA.

Methods Mol Biol. 2019;1995:161-171. doi: 10.1007/978-1-4939-9484-7_10.

PMID:
31148128
2.

Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF.

Pandey AK, Kumar M, Kumari S, Kumari P, Yusuf F, Jakeer S, Naz S, Chandna P, Bhatnagar I, Gaur NA.

Biotechnol Biofuels. 2019 Feb 27;12:40. doi: 10.1186/s13068-019-1379-x. eCollection 2019.

3.

Vacuolar Sequestration of Azoles, a Novel Strategy of Azole Antifungal Resistance Conserved across Pathogenic and Nonpathogenic Yeast.

Khandelwal NK, Wasi M, Nair R, Gupta M, Kumar M, Mondal AK, Gaur NA, Prasad R.

Antimicrob Agents Chemother. 2019 Feb 26;63(3). pii: e01347-18. doi: 10.1128/AAC.01347-18. Print 2019 Mar.

PMID:
30642932
4.

ABC transportome inventory of human pathogenic yeast Candida glabrata: Phylogenetic and expression analysis.

Kumari S, Kumar M, Khandelwal NK, Kumari P, Varma M, Vishwakarma P, Shahi G, Sharma S, Lynn AM, Prasad R, Gaur NA.

PLoS One. 2018 Aug 28;13(8):e0202993. doi: 10.1371/journal.pone.0202993. eCollection 2018.

5.

Identification of genome-wide binding sites of heat shock factor 1, Hsf1, under basal conditions in the human pathogenic yeast, Candida albicans.

Nair R, Khandelwal NK, Shariq M, Redhu AK, Gaur NA, Shaikh S, Prasad R.

AMB Express. 2018 Jul 16;8(1):116. doi: 10.1186/s13568-018-0647-7.

6.

Phosphatidylserine decarboxylase governs plasma membrane fluidity and impacts drug susceptibilities of Candida albicans cells.

Khandelwal NK, Sarkar P, Gaur NA, Chattopadhyay A, Prasad R.

Biochim Biophys Acta Biomembr. 2018 Nov;1860(11):2308-2319. doi: 10.1016/j.bbamem.2018.05.016. Epub 2018 May 29.

PMID:
29856993
7.

Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling.

Khandelwal NK, Chauhan N, Sarkar P, Esquivel BD, Coccetti P, Singh A, Coste AT, Gupta M, Sanglard D, White TC, Chauvel M, d'Enfert C, Chattopadhyay A, Gaur NA, Mondal AK, Prasad R.

J Biol Chem. 2018 Jan 12;293(2):412-432. doi: 10.1074/jbc.M117.807032. Epub 2017 Nov 20.

8.

Screening of natural yeast isolates under the effects of stresses associated with second-generation biofuel production.

Dubey R, Jakeer S, Gaur NA.

J Biosci Bioeng. 2016 May;121(5):509-16. doi: 10.1016/j.jbiosc.2015.09.006. Epub 2015 Oct 21.

PMID:
26481160
9.

Vps factors are required for efficient transcription elongation in budding yeast.

Gaur NA, Hasek J, Brickner DG, Qiu H, Zhang F, Wong CM, Malcova I, Vasicova P, Brickner JH, Hinnebusch AG.

Genetics. 2013 Mar;193(3):829-51. doi: 10.1534/genetics.112.146308. Epub 2013 Jan 18.

10.

Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex.

Qiu H, Hu C, Gaur NA, Hinnebusch AG.

EMBO J. 2012 Aug 15;31(16):3494-505. doi: 10.1038/emboj.2012.188. Epub 2012 Jul 13.

11.

A sterol-binding protein integrates endosomal lipid metabolism with TOR signaling and nitrogen sensing.

Mousley CJ, Yuan P, Gaur NA, Trettin KD, Nile AH, Deminoff SJ, Dewar BJ, Wolpert M, Macdonald JM, Herman PK, Hinnebusch AG, Bankaitis VA.

Cell. 2012 Feb 17;148(4):702-15. doi: 10.1016/j.cell.2011.12.026.

12.

UHRF1 phosphorylation by cyclin A2/cyclin-dependent kinase 2 is required for zebrafish embryogenesis.

Chu J, Loughlin EA, Gaur NA, SenBanerjee S, Jacob V, Monson C, Kent B, Oranu A, Ding Y, Ukomadu C, Sadler KC.

Mol Biol Cell. 2012 Jan;23(1):59-70. doi: 10.1091/mbc.E11-06-0487. Epub 2011 Nov 9.

13.

Disrupting vesicular trafficking at the endosome attenuates transcriptional activation by Gcn4.

Zhang F, Gaur NA, Hasek J, Kim SJ, Qiu H, Swanson MJ, Hinnebusch AG.

Mol Cell Biol. 2008 Nov;28(22):6796-818. doi: 10.1128/MCB.00800-08. Epub 2008 Sep 15.

14.

Transcriptional activation and increased mRNA stability contribute to overexpression of CDR1 in azole-resistant Candida albicans.

Manoharlal R, Gaur NA, Panwar SL, Morschhäuser J, Prasad R.

Antimicrob Agents Chemother. 2008 Apr;52(4):1481-92. doi: 10.1128/AAC.01106-07. Epub 2008 Feb 11.

15.

Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1.

Sadler KC, Krahn KN, Gaur NA, Ukomadu C.

Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1570-5. Epub 2007 Jan 22.

16.

Efflux pumps in drug resistance of Candida.

Prasad R, Gaur NA, Gaur M, Komath SS.

Infect Disord Drug Targets. 2006 Jun;6(2):69-83. Review.

PMID:
16789872
18.

Functional analysis of CaIPT1, a sphingolipid biosynthetic gene involved in multidrug resistance and morphogenesis of Candida albicans.

Prasad T, Saini P, Gaur NA, Vishwakarma RA, Khan LA, Haq QM, Prasad R.

Antimicrob Agents Chemother. 2005 Aug;49(8):3442-52.

19.

Alanine scanning of transmembrane helix 11 of Cdr1p ABC antifungal efflux pump of Candida albicans: identification of amino acid residues critical for drug efflux.

Saini P, Prasad T, Gaur NA, Shukla S, Jha S, Komath SS, Khan LA, Haq QM, Prasad R.

J Antimicrob Chemother. 2005 Jul;56(1):77-86. Epub 2005 Jun 3.

PMID:
15937063
20.

Expression of the CDR1 efflux pump in clinical Candida albicans isolates is controlled by a negative regulatory element.

Gaur NA, Manoharlal R, Saini P, Prasad T, Mukhopadhyay G, Hoefer M, Morschhäuser J, Prasad R.

Biochem Biophys Res Commun. 2005 Jun 24;332(1):206-14.

PMID:
15896319
21.

SRE1 and SRE2 are two specific steroid-responsive modules of Candida drug resistance gene 1 (CDR1) promoter.

Karnani N, Gaur NA, Jha S, Puri N, Krishnamurthy S, Goswami SK, Mukhopadhyay G, Prasad R.

Yeast. 2004 Feb;21(3):219-39.

22.

Identification of a negative regulatory element which regulates basal transcription of a multidrug resistance gene CDR1 of Candida albicans.

Gaur NA, Puri N, Karnani N, Mukhopadhyay G, Goswami SK, Prasad R.

FEMS Yeast Res. 2004 Jan;4(4-5):389-99.

Supplemental Content

Support Center