Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 42

1.

Engineering of Fatty Acid Synthases (FASs) to Boost the Production of Medium-Chain Fatty Acids (MCFAs) in Mucor circinelloides.

Hussain SA, Hameed A, Khan MAK, Zhang Y, Zhang H, Garre V, Song Y.

Int J Mol Sci. 2019 Feb 12;20(3). pii: E786. doi: 10.3390/ijms20030786.

2.

Mucor circinelloides Thrives inside the Phagosome through an Atf-Mediated Germination Pathway.

Pérez-Arques C, Navarro-Mendoza MI, Murcia L, Lax C, Martínez-García P, Heitman J, Nicolás FE, Garre V.

MBio. 2019 Feb 5;10(1). pii: e02765-18. doi: 10.1128/mBio.02765-18.

3.

Generation of A Mucor circinelloides Reporter Strain-A Promising New Tool to Study Antifungal Drug Efficacy and Mucormycosis.

Binder U, Navarro-Mendoza MI, Naschberger V, Bauer I, Nicolas FE, Pallua JD, Lass-Flörl C, Garre V.

Genes (Basel). 2018 Dec 7;9(12). pii: E613. doi: 10.3390/genes9120613.

4.

An Adult Zebrafish Model Reveals that Mucormycosis Induces Apoptosis of Infected Macrophages.

López-Muñoz A, Nicolás FE, García-Moreno D, Pérez-Oliva AB, Navarro-Mendoza MI, Hernández-Oñate MA, Herrera-Estrella A, Torres-Martínez S, Ruiz-Vázquez RM, Garre V, Mulero V.

Sci Rep. 2018 Aug 24;8(1):12802. doi: 10.1038/s41598-018-30754-6.

5.

Molecular Tools for Carotenogenesis Analysis in the Mucoral Mucor circinelloides.

Nicolás FE, Navarro-Mendoza MI, Pérez-Arques C, López-García S, Navarro E, Torres-Martínez S, Garre V.

Methods Mol Biol. 2018;1852:221-237. doi: 10.1007/978-1-4939-8742-9_13.

PMID:
30109634
6.

Mucor circinelloides: Growth, Maintenance, and Genetic Manipulation.

Vellanki S, Navarro-Mendoza MI, Garcia A, Murcia L, Perez-Arques C, Garre V, Nicolas FE, Lee SC.

Curr Protoc Microbiol. 2018 May;49(1):e53. doi: 10.1002/cpmc.53. Epub 2018 Apr 27.

PMID:
30040216
7.

Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism.

Navarro-Mendoza MI, Pérez-Arques C, Murcia L, Martínez-García P, Lax C, Sanchis M, Capilla J, Nicolás FE, Garre V.

Sci Rep. 2018 May 16;8(1):7660. doi: 10.1038/s41598-018-26051-x.

8.

Understanding Mucor circinelloides pathogenesis by comparative genomics and phenotypical studies.

López-Fernández L, Sanchis M, Navarro-Rodríguez P, Nicolás FE, Silva-Franco F, Guarro J, Garre V, Navarro-Mendoza MI, Pérez-Arques C, Capilla J.

Virulence. 2018 Dec 31;9(1):707-720. doi: 10.1080/21505594.2018.1435249.

9.

Control of morphology and virulence by ADP-ribosylation factors (Arf) in Mucor circinelloides.

Patiño-Medina JA, Maldonado-Herrera G, Pérez-Arques C, Alejandre-Castañeda V, Reyes-Mares NY, Valle-Maldonado MI, Campos-García J, Ortiz-Alvarado R, Jácome-Galarza IE, Ramírez-Díaz MI, Garre V, Meza-Carmen V.

Curr Genet. 2018 Aug;64(4):853-869. doi: 10.1007/s00294-017-0798-0. Epub 2017 Dec 20.

PMID:
29264641
10.

Improved γ-linolenic acid production in Mucor circinelloides by homologous overexpressing of delta-12 and delta-6 desaturases.

Zhang Y, Luan X, Zhang H, Garre V, Song Y, Ratledge C.

Microb Cell Fact. 2017 Jun 21;16(1):113. doi: 10.1186/s12934-017-0723-8.

11.

RNAi-Based Functional Genomics Identifies New Virulence Determinants in Mucormycosis.

Trieu TA, Navarro-Mendoza MI, Pérez-Arques C, Sanchis M, Capilla J, Navarro-Rodriguez P, Lopez-Fernandez L, Torres-Martínez S, Garre V, Ruiz-Vázquez RM, Nicolás FE.

PLoS Pathog. 2017 Jan 20;13(1):e1006150. doi: 10.1371/journal.ppat.1006150. eCollection 2017 Jan.

12.

RNA Interference in Fungi: Retention and Loss.

Nicolás FE, Garre V.

Microbiol Spectr. 2016 Dec;4(6). doi: 10.1128/microbiolspec.FUNK-0008-2016. Review.

PMID:
28087943
13.

Generation of lycopene-overproducing strains of the fungus Mucor circinelloides reveals important aspects of lycopene formation and accumulation.

Zhang Y, Chen H, Navarro E, López-García S, Chen YQ, Zhang H, Chen W, Garre V.

Biotechnol Lett. 2017 Mar;39(3):439-446. doi: 10.1007/s10529-016-2265-2. Epub 2016 Dec 1.

PMID:
27909822
14.

A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate β-carotene over-producing strains by genetic engineering.

Zhang Y, Navarro E, Cánovas-Márquez JT, Almagro L, Chen H, Chen YQ, Zhang H, Torres-Martínez S, Chen W, Garre V.

Microb Cell Fact. 2016 Jun 7;15:99. doi: 10.1186/s12934-016-0493-8.

15.

Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication.

Corrochano LM, Kuo A, Marcet-Houben M, Polaino S, Salamov A, Villalobos-Escobedo JM, Grimwood J, Álvarez MI, Avalos J, Bauer D, Benito EP, Benoit I, Burger G, Camino LP, Cánovas D, Cerdá-Olmedo E, Cheng JF, Domínguez A, Eliáš M, Eslava AP, Glaser F, Gutiérrez G, Heitman J, Henrissat B, Iturriaga EA, Lang BF, Lavín JL, Lee SC, Li W, Lindquist E, López-García S, Luque EM, Marcos AT, Martin J, McCluskey K, Medina HR, Miralles-Durán A, Miyazaki A, Muñoz-Torres E, Oguiza JA, Ohm RA, Olmedo M, Orejas M, Ortiz-Castellanos L, Pisabarro AG, Rodríguez-Romero J, Ruiz-Herrera J, Ruiz-Vázquez R, Sanz C, Schackwitz W, Shahriari M, Shelest E, Silva-Franco F, Soanes D, Syed K, Tagua VG, Talbot NJ, Thon MR, Tice H, de Vries RP, Wiebenga A, Yadav JS, Braun EL, Baker SE, Garre V, Schmutz J, Horwitz BA, Torres-Martínez S, Idnurm A, Herrera-Estrella A, Gabaldón T, Grigoriev IV.

Curr Biol. 2016 Jun 20;26(12):1577-1584. doi: 10.1016/j.cub.2016.04.038. Epub 2016 May 26.

16.

Role of malate transporter in lipid accumulation of oleaginous fungus Mucor circinelloides.

Zhao L, Cánovas-Márquez JT, Tang X, Chen H, Chen YQ, Chen W, Garre V, Song Y, Ratledge C.

Appl Microbiol Biotechnol. 2016 Feb;100(3):1297-1305. doi: 10.1007/s00253-015-7079-y. Epub 2015 Oct 28.

PMID:
26512004
17.

Distinct RNAi Pathways in the Regulation of Physiology and Development in the Fungus Mucor circinelloides.

Ruiz-Vázquez RM, Nicolás FE, Torres-Martínez S, Garre V.

Adv Genet. 2015;91:55-102. doi: 10.1016/bs.adgen.2015.07.002. Epub 2015 Aug 7. Review.

PMID:
26410030
18.

Comparison of Biochemical Activities between High and Low Lipid-Producing Strains of Mucor circinelloides: An Explanation for the High Oleaginicity of Strain WJ11.

Tang X, Chen H, Chen YQ, Chen W, Garre V, Song Y, Ratledge C.

PLoS One. 2015 Jun 5;10(6):e0128396. doi: 10.1371/journal.pone.0128396. eCollection 2015.

19.

The RNAi machinery controls distinct responses to environmental signals in the basal fungus Mucor circinelloides.

Nicolás FE, Vila A, Moxon S, Cascales MD, Torres-Martínez S, Ruiz-Vázquez RM, Garre V.

BMC Genomics. 2015 Mar 25;16:237. doi: 10.1186/s12864-015-1443-2.

20.

A non-canonical RNA silencing pathway promotes mRNA degradation in basal Fungi.

Trieu TA, Calo S, Nicolás FE, Vila A, Moxon S, Dalmay T, Torres-Martínez S, Garre V, Ruiz-Vázquez RM.

PLoS Genet. 2015 Apr 13;11(4):e1005168. doi: 10.1371/journal.pgen.1005168. eCollection 2015 Apr.

21.

A white collar 1-like protein mediates opposite regulatory functions in Mucor circinelloides.

Navarro E, Peñaranda A, Hansberg W, Torres-Martínez S, Garre V.

Fungal Genet Biol. 2013 Mar;52:42-52. doi: 10.1016/j.fgb.2012.12.003. Epub 2013 Jan 26.

PMID:
23357353
22.

Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides.

Rodríguez-Frómeta RA, Gutiérrez A, Torres-Martínez S, Garre V.

Appl Microbiol Biotechnol. 2013 Apr;97(7):3063-72. doi: 10.1007/s00253-012-4432-2. Epub 2012 Oct 2.

PMID:
23053085
23.

Molecular tools for carotenogenesis analysis in the zygomycete Mucor circinelloides.

Torres-Martínez S, Ruiz-Vázquez RM, Garre V, López-García S, Navarro E, Vila A.

Methods Mol Biol. 2012;898:85-107. doi: 10.1007/978-1-61779-918-1_5.

PMID:
22711119
24.

Protein kinase A regulatory subunit isoforms regulate growth and differentiation in Mucor circinelloides: essential role of PKAR4.

Ocampo J, McCormack B, Navarro E, Moreno S, Garre V, Rossi S.

Eukaryot Cell. 2012 Aug;11(8):989-1002. doi: 10.1128/EC.00017-12. Epub 2012 May 25.

25.

High reliability transformation of the basal fungus Mucor circinelloides by electroporation.

Gutiérrez A, López-García S, Garre V.

J Microbiol Methods. 2011 Mar;84(3):442-6. doi: 10.1016/j.mimet.2011.01.002. Epub 2011 Jan 21.

PMID:
21256886
26.

Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light.

Corrochano LM, Garre V.

Fungal Genet Biol. 2010 Nov;47(11):893-9. doi: 10.1016/j.fgb.2010.04.007. Epub 2010 May 11. Review.

PMID:
20466063
27.

A subunit of protein kinase a regulates growth and differentiation in the fungus Mucor circinelloides.

Ocampo J, Fernandez Nuñez L, Silva F, Pereyra E, Moreno S, Garre V, Rossi S.

Eukaryot Cell. 2009 Jul;8(7):933-44. doi: 10.1128/EC.00026-09. Epub 2009 May 1. Erratum in: Eukaryot Cell. 2012 Jul;11(7):963.

28.

A RING-finger protein regulates carotenogenesis via proteolysis-independent ubiquitylation of a white collar-1-like activator.

Silva F, Navarro E, Peñaranda A, Murcia-Flores L, Torres-Martínez S, Garre V.

Mol Microbiol. 2008 Nov;70(4):1026-36. doi: 10.1111/j.1365-2958.2008.06470.x. Epub 2008 Oct 2.

29.
30.

Role of the white collar 1 photoreceptor in carotenogenesis, UV resistance, hydrophobicity, and virulence of Fusarium oxysporum.

Ruiz-Roldán MC, Garre V, Guarro J, Mariné M, Roncero MI.

Eukaryot Cell. 2008 Jul;7(7):1227-30. doi: 10.1128/EC.00072-08. Epub 2008 May 23.

31.

A RING-finger photocarotenogenic repressor involved in asexual sporulation in Mucor circinelloides.

Nicolás FE, Calo S, Murcia-Flores L, Garre V, Ruiz-Vázquez RM, Torres-Martínez S.

FEMS Microbiol Lett. 2008 Mar;280(1):81-8. doi: 10.1111/j.1574-6968.2007.01044.x. Epub 2008 Jan 10.

32.

Non-AUG translation initiation of a fungal RING finger repressor involved in photocarotenogenesis.

Murcia-Flores L, Lorca-Pascual JM, Garre V, Torres-Martínez S, Ruiz-Vázquez RM.

J Biol Chem. 2007 May 25;282(21):15394-403. Epub 2007 Apr 2.

33.

Distinct white collar-1 genes control specific light responses in Mucor circinelloides.

Silva F, Torres-Martínez S, Garre V.

Mol Microbiol. 2006 Aug;61(4):1023-37.

34.

Light induction of the carotenoid biosynthesis pathway in Blakeslea trispora.

Quiles-Rosillo MD, Ruiz-Vázquez RM, Torres-Martínez S, Garre V.

Fungal Genet Biol. 2005 Feb;42(2):141-53. Epub 2004 Nov 24.

PMID:
15670712
35.

The RING-finger domain of the fungal repressor crgA is essential for accurate light regulation of carotenogenesis.

Lorca-Pascual JM, Murcia-Flores L, Garre V, Torres-Martínez S, Ruiz-Vázquez RM.

Mol Microbiol. 2004 Jun;52(5):1463-74.

36.

Cloning, characterization and heterologous expression of the Blakeslea trispora gene encoding orotidine-5'-monophosphate decarboxylase.

Quiles-Rosillo MD, Ruiz-Vázquez RM, Torres-Martínez S, Garre V.

FEMS Microbiol Lett. 2003 May 28;222(2):229-36.

37.

cigA, a light-inducible gene involved in vegetative growth in Mucor circinelloides is regulated by the carotenogenic repressor crgA.

Quiles-Rosillo MD, Torres-Martínez S, Garre V.

Fungal Genet Biol. 2003 Feb;38(1):122-32.

PMID:
12553942
38.

Structural and functional analysis of an oligomeric hydrophobin gene from Claviceps purpurea.

Mey G, Correia T, Oeser B, Kershaw MJ, Garre V, Arntz C, Talbot NJ, Tudzynski P.

Mol Plant Pathol. 2003 Jan 1;4(1):31-41. doi: 10.1046/j.1364-3703.2003.00138.x.

PMID:
20569360
39.

A negative regulator of light-inducible carotenogenesis in Mucor circinelloides.

Navarro E, Lorca-Pascual JM, Quiles-Rosillo MD, Nicolás FE, Garre V, Torres-Martínez S, Ruiz-Vázquez RM.

Mol Genet Genomics. 2001 Nov;266(3):463-70.

PMID:
11713676
40.
41.

Mutants of Phycomyces blakesleeanus Defective in Acetyl-CoA Synthetase

Garre V V, Torres-Martinez S.

Fungal Genet Biol. 1996 Mar;20(1):70-3.

PMID:
8812287
42.

Isolation of the facA (acetyl-CoA synthetase) gene of Phycomyces blakesleeanus.

Garre V, Murillo FJ, Torres-Martínez S.

Mol Gen Genet. 1994 Aug 2;244(3):278-86.

PMID:
7914670

Supplemental Content

Support Center