Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 70

1.

Integrated Functional Analysis of the Nuclear Proteome of Classically and Alternatively Activated Macrophages.

Wiktorowicz JE, Chowdhury IH, Stafford S, Choudhuri S, Dey N, Garg NJ.

Mediators Inflamm. 2019 Apr 30;2019:3481430. doi: 10.1155/2019/3481430. eCollection 2019.

2.

Metabolic programming of macrophage functions and pathogens control.

Koo SJ, Garg NJ.

Redox Biol. 2019 Apr 20;24:101198. doi: 10.1016/j.redox.2019.101198. [Epub ahead of print] Review.

3.

Fluorescence Proteomic Technology to Analyze Peripheral Blood Mononuclear Cells in Chronic Chagas Disease.

Wiktorowicz JE, Zago MP, Garg NJ.

Methods Mol Biol. 2019;1955:363-380. doi: 10.1007/978-1-4939-9148-8_27.

PMID:
30868541
4.

Potential Utility of Protein Targets of Cysteine-S-Nitrosylation in Identifying Clinical Disease Status in Human Chagas Disease.

Zago MP, Wiktorowicz JE, Spratt H, Koo SJ, Barrientos N, Nuñez Burgos A, Nuñez Burgos J, Iñiguez F, Botelli V, Leon de la Fuente R, Garg NJ.

Front Microbiol. 2019 Jan 15;9:3320. doi: 10.3389/fmicb.2018.03320. eCollection 2018.

5.

TcVac1 vaccine delivery by intradermal electroporation enhances vaccine induced immune protection against Trypanosoma cruzi infection in mice.

Hegazy-Hassan W, Zepeda-Escobar JA, Ochoa-García L, Contreras-Ortíz JME, Tenorio-Borroto E, Barbabosa-Pliego A, Aparicio-Burgos JE, Oros-Pantoja R, Rivas-Santiago B, Díaz-Albiter H, Garg NJ, Vázquez-Chagoyán JC.

Vaccine. 2019 Jan 7;37(2):248-257. doi: 10.1016/j.vaccine.2018.11.041. Epub 2018 Nov 27.

6.

Trypanothione synthetase confers growth, survival advantage and resistance to anti-protozoal drugs in Trypanosoma cruzi.

Mesías AC, Sasoni N, Arias DG, Pérez Brandán C, Orban OCF, Kunick C, Robello C, Comini MA, Garg NJ, Zago MP.

Free Radic Biol Med. 2019 Jan;130:23-34. doi: 10.1016/j.freeradbiomed.2018.10.436. Epub 2018 Oct 23.

PMID:
30359758
7.

Pathology and Pathogenesis of Chagas Heart Disease.

Bonney KM, Luthringer DJ, Kim SA, Garg NJ, Engman DM.

Annu Rev Pathol. 2019 Jan 24;14:421-447. doi: 10.1146/annurev-pathol-020117-043711. Epub 2018 Oct 24.

PMID:
30355152
8.

Proinflammatory Effects of Respiratory Syncytial Virus-Induced Epithelial HMGB1 on Human Innate Immune Cell Activation.

Rayavara K, Kurosky A, Stafford SJ, Garg NJ, Brasier AR, Garofalo RP, Hosakote YM.

J Immunol. 2018 Nov 1;201(9):2753-2766. doi: 10.4049/jimmunol.1800558. Epub 2018 Oct 1.

PMID:
30275049
9.

Early Trypanosoma cruzi Infection Triggers mTORC1-Mediated Respiration Increase and Mitochondrial Biogenesis in Human Primary Cardiomyocytes.

Libisch MG, Faral-Tello P, Garg NJ, Radi R, Piacenza L, Robello C.

Front Microbiol. 2018 Aug 16;9:1889. doi: 10.3389/fmicb.2018.01889. eCollection 2018.

10.

Manganese superoxide dismutase deficiency exacerbates the mitochondrial ROS production and oxidative damage in Chagas disease.

Wen JJ, Garg NJ.

PLoS Negl Trop Dis. 2018 Jul 25;12(7):e0006687. doi: 10.1371/journal.pntd.0006687. eCollection 2018 Jul.

11.

Pathogenesis of Chronic Chagas Disease: Macrophages, Mitochondria, and Oxidative Stress.

Lopez M, Tanowitz HB, Garg NJ.

Curr Clin Microbiol Rep. 2018 Mar;5(1):45-54. Epub 2018 Jan 19.

12.

PARP1 depletion improves mitochondrial and heart function in Chagas disease: Effects on POLG dependent mtDNA maintenance.

Wen JJ, Yin YW, Garg NJ.

PLoS Pathog. 2018 May 31;14(5):e1007065. doi: 10.1371/journal.ppat.1007065. eCollection 2018 May.

13.

Pentose Phosphate Shunt Modulates Reactive Oxygen Species and Nitric Oxide Production Controlling Trypanosoma cruzi in Macrophages.

Koo SJ, Szczesny B, Wan X, Putluri N, Garg NJ.

Front Immunol. 2018 Feb 16;9:202. doi: 10.3389/fimmu.2018.00202. eCollection 2018.

14.

Quantitative and histological assessment of maternal-fetal transmission of Trypanosoma cruzi in guinea pigs: An experimental model of congenital Chagas disease.

Torres-Vargas J, Jiménez-Coello M, Guzmán-Marín E, Acosta-Viana KY, Yadon ZE, Gutiérrez-Blanco E, Guillermo-Cordero JL, Garg NJ, Ortega-Pacheco A.

PLoS Negl Trop Dis. 2018 Jan 24;12(1):e0006222. doi: 10.1371/journal.pntd.0006222. eCollection 2018 Jan.

15.

Protein Cysteinyl-S-Nitrosylation: Analysis and Quantification.

Wiktorowicz JE, Stafford SJ, Garg NJ.

Methods Enzymol. 2017;586:1-14. doi: 10.1016/bs.mie.2016.10.016. Epub 2017 Jan 5.

PMID:
28137558
16.
17.

Gene Expression Profiling and Functional Characterization of Macrophages in Response to Circulatory Microparticles Produced during Trypanosoma cruzi Infection and Chagas Disease.

Chowdhury IH, Koo SJ, Gupta S, Liang LY, Bahar B, Silla L, Nuñez-Burgos J, Barrientos N, Zago MP, Garg NJ.

J Innate Immun. 2017;9(2):203-216. doi: 10.1159/000451055. Epub 2016 Dec 1.

18.

SIRT1-PGC1α-NFκB Pathway of Oxidative and Inflammatory Stress during Trypanosoma cruzi Infection: Benefits of SIRT1-Targeted Therapy in Improving Heart Function in Chagas Disease.

Wan X, Wen JJ, Koo SJ, Liang LY, Garg NJ.

PLoS Pathog. 2016 Oct 20;12(10):e1005954. doi: 10.1371/journal.ppat.1005954. eCollection 2016 Oct.

19.

Chemotherapeutic efficacy of phosphodiesterase inhibitors in chagasic cardiomyopathy.

Wen JJ, Wan X, Thacker J, Garg NJ.

JACC Basic Transl Sci. 2016 Jun;1(4):235-250.

20.

Differential inflammasome activation signatures following intracellular infection of human macrophages with Mycobacterium bovis BCG or Trypanosoma cruzi.

Huante MB, Gupta S, Calderon VC, Koo SJ, Sinha M, Luxon BA, Garg NJ, Endsley JJ.

Tuberculosis (Edinb). 2016 Dec;101S:S35-S44. doi: 10.1016/j.tube.2016.09.026. Epub 2016 Sep 28.

PMID:
27733245
21.

Macrophages Promote Oxidative Metabolism To Drive Nitric Oxide Generation in Response to Trypanosoma cruzi.

Koo SJ, Chowdhury IH, Szczesny B, Wan X, Garg NJ.

Infect Immun. 2016 Nov 18;84(12):3527-3541. Print 2016 Dec.

22.

Editorial commentary: Targeting Chagas disease.

Tanowitz HB, Garg NJ.

Trends Cardiovasc Med. 2017 Feb;27(2):92-94. doi: 10.1016/j.tcm.2016.08.007. Epub 2016 Aug 26. No abstract available.

PMID:
27686273
23.

S-Nitrosylation Proteome Profile of Peripheral Blood Mononuclear Cells in Human Heart Failure.

Koo SJ, Spratt HM, Soman KV, Stafford S, Gupta S, Petersen JR, Zago MP, Kuyumcu-Martinez MN, Brasier AR, Wiktorowicz JE, Garg NJ.

Int J Proteomics. 2016;2016:1384523. doi: 10.1155/2016/1384523. Epub 2016 Aug 18.

24.

Dysregulation of RBFOX2 Is an Early Event in Cardiac Pathogenesis of Diabetes.

Nutter CA, Jaworski EA, Verma SK, Deshmukh V, Wang Q, Botvinnik OB, Lozano MJ, Abass IJ, Ijaz T, Brasier AR, Garg NJ, Wehrens XHT, Yeo GW, Kuyumcu-Martinez MN.

Cell Rep. 2016 Jun 7;15(10):2200-2213. doi: 10.1016/j.celrep.2016.05.002. Epub 2016 May 26.

25.

TcI Isolates of Trypanosoma cruzi Exploit the Antioxidant Network for Enhanced Intracellular Survival in Macrophages and Virulence in Mice.

Zago MP, Hosakote YM, Koo SJ, Dhiman M, Piñeyro MD, Parodi-Talice A, Basombrio MA, Robello C, Garg NJ.

Infect Immun. 2016 May 24;84(6):1842-1856. doi: 10.1128/IAI.00193-16. Print 2016 Jun.

26.

Changes in Proteome Profile of Peripheral Blood Mononuclear Cells in Chronic Chagas Disease.

Garg NJ, Soman KV, Zago MP, Koo SJ, Spratt H, Stafford S, Blell ZN, Gupta S, Nuñez Burgos J, Barrientos N, Brasier AR, Wiktorowicz JE.

PLoS Negl Trop Dis. 2016 Feb 26;10(2):e0004490. doi: 10.1371/journal.pntd.0004490. eCollection 2016 Feb.

27.

Developments in the management of Chagas cardiomyopathy.

Tanowitz HB, Machado FS, Spray DC, Friedman JM, Weiss OS, Lora JN, Nagajyothi J, Moraes DN, Garg NJ, Nunes MC, Ribeiro AL.

Expert Rev Cardiovasc Ther. 2015 Dec;13(12):1393-409. doi: 10.1586/14779072.2015.1103648. Epub 2015 Oct 23. Review.

28.

Therapeutic Efficacy of a Subunit Vaccine in Controlling Chronic Trypanosoma cruzi Infection and Chagas Disease Is Enhanced by Glutathione Peroxidase Over-Expression.

Gupta S, Smith C, Auclair S, Delgadillo Ade J, Garg NJ.

PLoS One. 2015 Jun 15;10(6):e0130562. doi: 10.1371/journal.pone.0130562. eCollection 2015.

29.

A Two-Component DNA-Prime/Protein-Boost Vaccination Strategy for Eliciting Long-Term, Protective T Cell Immunity against Trypanosoma cruzi.

Gupta S, Garg NJ.

PLoS Pathog. 2015 May 7;11(5):e1004828. doi: 10.1371/journal.ppat.1004828. eCollection 2015 May.

30.

Immune protection against Trypanosoma cruzi induced by TcVac4 in a canine model.

Aparicio-Burgos JE, Zepeda-Escobar JA, de Oca-Jimenez RM, Estrada-Franco JG, Barbabosa-Pliego A, Ochoa-García L, Alejandre-Aguilar R, Rivas N, Peñuelas-Rivas G, Val-Arreola M, Gupta S, Salazar-García F, Garg NJ, Vázquez-Chagoyán JC.

PLoS Negl Trop Dis. 2015 Apr 8;9(4):e0003625. doi: 10.1371/journal.pntd.0003625. eCollection 2015 Apr.

31.

P47phox-/- mice are compromised in expansion and activation of CD8+ T cells and susceptible to Trypanosoma cruzi infection.

Dhiman M, Garg NJ.

PLoS Pathog. 2014 Dec 4;10(12):e1004516. doi: 10.1371/journal.ppat.1004516. eCollection 2014 Dec.

32.

Caspase-1/ASC inflammasome-mediated activation of IL-1β-ROS-NF-κB pathway for control of Trypanosoma cruzi replication and survival is dispensable in NLRP3-/- macrophages.

Dey N, Sinha M, Gupta S, Gonzalez MN, Fang R, Endsley JJ, Luxon BA, Garg NJ.

PLoS One. 2014 Nov 5;9(11):e111539. doi: 10.1371/journal.pone.0111539. eCollection 2014.

33.

Hepatotoxicity in mice of a novel anti-parasite drug candidate hydroxymethylnitrofurazone: a comparison with Benznidazole.

Davies C, Dey N, Negrette OS, Parada LA, Basombrio MA, Garg NJ.

PLoS Negl Trop Dis. 2014 Oct 16;8(10):e3231. doi: 10.1371/journal.pntd.0003231. eCollection 2014 Oct.

34.

Markers of oxidative stress in adipose tissue during Trypanosoma cruzi infection.

Wen JJ, Nagajyothi F, Machado FS, Weiss LM, Scherer PE, Tanowitz HB, Garg NJ.

Parasitol Res. 2014 Sep;113(9):3159-65. doi: 10.1007/s00436-014-3977-7. Epub 2014 Jun 20.

35.

Serum-mediated activation of macrophages reflects TcVac2 vaccine efficacy against Chagas disease.

Gupta S, Silva TS, Osizugbo JE, Tucker L, Spratt HM, Garg NJ.

Infect Immun. 2014 Apr;82(4):1382-9. doi: 10.1128/IAI.01186-13. Epub 2014 Jan 13.

36.

MnSODtg mice control myocardial inflammatory and oxidative stress and remodeling responses elicited in chronic Chagas disease.

Dhiman M, Wan X, Popov VL, Vargas G, Garg NJ.

J Am Heart Assoc. 2013 Oct 17;2(5):e000302. doi: 10.1161/JAHA.113.000302.

37.

Innate immune responses and antioxidant/oxidant imbalance are major determinants of human Chagas disease.

Dhiman M, Coronado YA, Vallejo CK, Petersen JR, Ejilemele A, Nuñez S, Zago MP, Spratt H, Garg NJ.

PLoS Negl Trop Dis. 2013 Aug 8;7(8):e2364. doi: 10.1371/journal.pntd.0002364. eCollection 2013.

38.

Leishmania amazonensis amastigotes trigger neutrophil activation but resist neutrophil microbicidal mechanisms.

Carlsen ED, Hay C, Henard CA, Popov V, Garg NJ, Soong L.

Infect Immun. 2013 Nov;81(11):3966-74. doi: 10.1128/IAI.00770-13. Epub 2013 Aug 5.

39.

Granulocyte colony-stimulating factor partially repairs the damage provoked by Trypanosoma cruzi in murine myocardium.

González MN, Dey N, Garg NJ, Postan M.

Int J Cardiol. 2013 Oct 3;168(3):2567-74. doi: 10.1016/j.ijcard.2013.03.049. Epub 2013 Apr 15.

40.

TcVac3 induced control of Trypanosoma cruzi infection and chronic myocarditis in mice.

Gupta S, Garg NJ.

PLoS One. 2013;8(3):e59434. doi: 10.1371/journal.pone.0059434. Epub 2013 Mar 26.

41.

Antigenicity and diagnostic potential of vaccine candidates in human Chagas disease.

Gupta S, Wan X, Zago MP, Sellers VC, Silva TS, Assiah D, Dhiman M, Nuñez S, Petersen JR, Vázquez-Chagoyán JC, Estrada-Franco JG, Garg NJ.

PLoS Negl Trop Dis. 2013;7(1):e2018. doi: 10.1371/journal.pntd.0002018. Epub 2013 Jan 17.

42.

Defects of mtDNA replication impaired mitochondrial biogenesis during Trypanosoma cruzi infection in human cardiomyocytes and chagasic patients: the role of Nrf1/2 and antioxidant response.

Wan X, Gupta S, Zago MP, Davidson MM, Dousset P, Amoroso A, Garg NJ.

J Am Heart Assoc. 2012 Dec;1(6):e003855. doi: 10.1161/JAHA.112.003855. Epub 2012 Dec 19.

43.

Delivery of antigenic candidates by a DNA/MVA heterologous approach elicits effector CD8(+)T cell mediated immunity against Trypanosoma cruzi.

Gupta S, Garg NJ.

Vaccine. 2012 Nov 26;30(50):7179-86. doi: 10.1016/j.vaccine.2012.10.018. Epub 2012 Oct 15.

44.

Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease.

Machado FS, Dutra WO, Esper L, Gollob KJ, Teixeira MM, Factor SM, Weiss LM, Nagajyothi F, Tanowitz HB, Garg NJ.

Semin Immunopathol. 2012 Nov;34(6):753-70. doi: 10.1007/s00281-012-0351-7. Epub 2012 Oct 18. Review.

45.

Serum proteomic signature of human chagasic patients for the identification of novel potential protein biomarkers of disease.

Wen JJ, Zago MP, Nuñez S, Gupta S, Burgos FN, Garg NJ.

Mol Cell Proteomics. 2012 Aug;11(8):435-52. doi: 10.1074/mcp.M112.017640. Epub 2012 Apr 27.

46.

Mechanisms of Trypanosoma cruzi persistence in Chagas disease.

Nagajyothi F, Machado FS, Burleigh BA, Jelicks LA, Scherer PE, Mukherjee S, Lisanti MP, Weiss LM, Garg NJ, Tanowitz HB.

Cell Microbiol. 2012 May;14(5):634-43. doi: 10.1111/j.1462-5822.2012.01764.x. Epub 2012 Feb 24. Review.

47.

Inflammasomes in cardiovascular diseases.

Garg NJ.

Am J Cardiovasc Dis. 2011;1(3):244-54. Epub 2011 Sep 10.

48.

Cardiac-oxidized antigens are targets of immune recognition by antibodies and potential molecular determinants in chagas disease pathogenesis.

Dhiman M, Zago MP, Nunez S, Amoroso A, Rementeria H, Dousset P, Nunez Burgos F, Garg NJ.

PLoS One. 2012;7(1):e28449. doi: 10.1371/journal.pone.0028449. Epub 2012 Jan 4.

49.

Proteome expression and carbonylation changes during Trypanosoma cruzi infection and Chagas disease in rats.

Wen JJ, Garg NJ.

Mol Cell Proteomics. 2012 Apr;11(4):M111.010918. doi: 10.1074/mcp.M111.010918. Epub 2011 Dec 22.

50.

NADPH oxidase inhibition ameliorates Trypanosoma cruzi-induced myocarditis during Chagas disease.

Dhiman M, Garg NJ.

J Pathol. 2011 Dec;225(4):583-96. doi: 10.1002/path.2975. Epub 2011 Sep 26.

Supplemental Content

Support Center