Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

Oxidative stress induces loss of pericyte coverage and vascular instability in PGC-1α-deficient mice.

García-Quintans N, Sánchez-Ramos C, Prieto I, Tierrez A, Arza E, Alfranca A, Redondo JM, Monsalve M.

Angiogenesis. 2016 Apr;19(2):217-28. doi: 10.1007/s10456-016-9502-0. Epub 2016 Mar 7.

2.

Regulation of endothelial dynamics by PGC-1α relies on ROS control of VEGF-A signaling.

García-Quintans N, Prieto I, Sánchez-Ramos C, Luque A, Arza E, Olmos Y, Monsalve M.

Free Radic Biol Med. 2016 Apr;93:41-51. doi: 10.1016/j.freeradbiomed.2016.01.021. Epub 2016 Jan 29.

3.

Control of endothelial function and angiogenesis by PGC-1α relies on ROS control of vascular stability.

García-Quintans N, Sánchez-Ramos C, Tierrez A, Olmo Y, Luque A, Arza E, Alfranca A, Miguel Redondo J, Monsalve M.

Free Radic Biol Med. 2014 Oct;75 Suppl 1:S5. doi: 10.1016/j.freeradbiomed.2014.10.836. Epub 2014 Dec 10.

PMID:
26461397
4.

SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1α complex.

Olmos Y, Sánchez-Gómez FJ, Wild B, García-Quintans N, Cabezudo S, Lamas S, Monsalve M.

Antioxid Redox Signal. 2013 Nov 1;19(13):1507-21. doi: 10.1089/ars.2012.4713. Epub 2013 Apr 15.

5.

A real-time PCR assay for detection and quantification of 2-branched (1,3)-beta-D-glucan producing lactic acid bacteria in cider.

Ibarburu I, Aznar R, Elizaquível P, García-Quintáns N, López P, Munduate A, Irastorza A, Dueñas MT.

Int J Food Microbiol. 2010 Sep 30;143(1-2):26-31. doi: 10.1016/j.ijfoodmicro.2010.07.023. Epub 2010 Jul 21.

6.

Inactivation of Foxo3a and subsequent downregulation of PGC-1 alpha mediate nitric oxide-induced endothelial cell migration.

Borniquel S, García-Quintáns N, Valle I, Olmos Y, Wild B, Martínez-Granero F, Soria E, Lamas S, Monsalve M.

Mol Cell Biol. 2010 Aug;30(16):4035-44. doi: 10.1128/MCB.00175-10. Epub 2010 Jun 14.

7.

Activation of the diacetyl/acetoin pathway in Lactococcus lactis subsp. lactis bv. diacetylactis CRL264 by acidic growth.

García-Quintáns N, Repizo G, Martín M, Magni C, López P.

Appl Environ Microbiol. 2008 Apr;74(7):1988-96. doi: 10.1128/AEM.01851-07. Epub 2008 Feb 1.

8.

Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH.

Sánchez C, Neves AR, Cavalheiro J, dos Santos MM, García-Quintáns N, López P, Santos H.

Appl Environ Microbiol. 2008 Feb;74(4):1136-44. Epub 2007 Dec 21.

9.

Processing of as-48ABC RNA in AS-48 enterocin production by Enterococcus faecalis.

Fernández M, Sánchez-Hidalgo M, García-Quintáns N, Martínez-Bueno M, Valdivia E, López P, Maqueda M.

J Bacteriol. 2008 Jan;190(1):240-50. Epub 2007 Nov 2.

10.

The role of Escherichia coli RNase E and RNase III in the processing of the citQRP operon mRNA from Lactococcus lactis biovar diacetylactis.

Drider D, Santos JM, García-Quintáns N, Arraiano CM, López P.

J Mol Microbiol Biotechnol. 1999 Nov;1(2):337-46.

PMID:
10943565
11.

A comparative analysis of the citrate permease P mRNA stability in Lactococcus lactis biovar diacetylactis and Escherichia coli.

Drider D, García-Quintáns N, Santos JM, Arraiano CM, López P.

FEMS Microbiol Lett. 1999 Mar 15;172(2):115-22.

12.

The citrate transport system of Lactococcus lactis subsp. lactis biovar diacetylactis is induced by acid stress.

García-Quintáns N, Magni C, de Mendoza D, López P.

Appl Environ Microbiol. 1998 Mar;64(3):850-7.

Supplemental Content

Loading ...
Support Center