Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 133

1.

Synergistic Cytotoxicity from Drugs and Cytokines In Vitro as an Approach to Classify Drugs According to Their Potential to Cause Idiosyncratic Hepatotoxicity: A Proof-of-Concept Study.

Maiuri AR, Wassink B, Turkus JD, Breier AB, Lansdell T, Kaur G, Hession SL, Ganey PE, Roth RA.

J Pharmacol Exp Ther. 2017 Sep;362(3):459-473. doi: 10.1124/jpet.117.242354. Epub 2017 Jul 7.

2.

Idiosyncratic Drug-Induced Liver Injury: Is Drug-Cytokine Interaction the Linchpin?

Roth RA, Maiuri AR, Ganey PE.

J Pharmacol Exp Ther. 2017 Feb;360(2):461-470. doi: 10.1124/jpet.116.237578. Epub 2016 Nov 15. Review.

PMID:
28104833
3.

Calcium Contributes to the Cytotoxic Interaction Between Diclofenac and Cytokines.

Maiuri AR, Breier AB, Turkus JD, Ganey PE, Roth RA.

Toxicol Sci. 2016 Feb;149(2):372-84. doi: 10.1093/toxsci/kfv249. Epub 2015 Nov 24.

4.

Platelets and protease-activated receptor-4 contribute to acetaminophen-induced liver injury in mice.

Miyakawa K, Joshi N, Sullivan BP, Albee R, Brandenberger C, Jaeschke H, McGill MR, Scott MA, Ganey PE, Luyendyk JP, Roth RA.

Blood. 2015 Oct 8;126(15):1835-43. doi: 10.1182/blood-2014-09-598656. Epub 2015 Jul 15.

5.

A Cytochrome P450-Independent Mechanism of Acetaminophen-Induced Injury in Cultured Mouse Hepatocytes.

Miyakawa K, Albee R, Letzig LG, Lehner AF, Scott MA, Buchweitz JP, James LP, Ganey PE, Roth RA.

J Pharmacol Exp Ther. 2015 Aug;354(2):230-7. doi: 10.1124/jpet.115.223537. Epub 2015 Jun 11.

6.

Cytotoxic Synergy Between Cytokines and NSAIDs Associated With Idiosyncratic Hepatotoxicity Is Driven by Mitogen-Activated Protein Kinases.

Maiuri AR, Breier AB, Gora LF, Parkins RV, Ganey PE, Roth RA.

Toxicol Sci. 2015 Aug;146(2):265-80. doi: 10.1093/toxsci/kfv091. Epub 2015 May 7.

7.

Trovafloxacin-induced replication stress sensitizes HepG2 cells to tumor necrosis factor-alpha-induced cytotoxicity mediated by extracellular signal-regulated kinase and ataxia telangiectasia and Rad3-related.

Beggs KM, Maiuri AR, Fullerton AM, Poulsen KL, Breier AB, Ganey PE, Roth RA.

Toxicology. 2015 May 4;331:35-46. doi: 10.1016/j.tox.2015.03.002. Epub 2015 Mar 5.

8.

Trovafloxacin enhances lipopolysaccharide-stimulated production of tumor necrosis factor-α by macrophages: role of the DNA damage response.

Poulsen KL, Olivero-Verbel J, Beggs KM, Ganey PE, Roth RA.

J Pharmacol Exp Ther. 2014 Jul;350(1):164-70. doi: 10.1124/jpet.114.214189. Epub 2014 May 9.

9.

Trovafloxacin potentiation of lipopolysaccharide-induced tumor necrosis factor release from RAW 264.7 cells requires extracellular signal-regulated kinase and c-Jun N-Terminal Kinase.

Poulsen KL, Albee RP, Ganey PE, Roth RA.

J Pharmacol Exp Ther. 2014 May;349(2):185-91. doi: 10.1124/jpet.113.211276. Epub 2014 Feb 13.

10.

Molecular mechanisms of hepatocellular apoptosis induced by trovafloxacin-tumor necrosis factor-alpha interaction.

Beggs KM, Fullerton AM, Miyakawa K, Ganey PE, Roth RA.

Toxicol Sci. 2014 Jan;137(1):91-101. doi: 10.1093/toxsci/kft226. Epub 2013 Oct 4.

11.

Pretreatment with TCDD exacerbates liver injury from Concanavalin A: critical role for NK cells.

Fullerton AM, Roth RA, Ganey PE.

Toxicol Sci. 2013 Nov;136(1):72-85. doi: 10.1093/toxsci/kft174. Epub 2013 Aug 22.

12.

Roles of the hemostatic system and neutrophils in liver injury from co-exposure to amiodarone and lipopolysaccharide.

Lu J, Roth RA, Malle E, Ganey PE.

Toxicol Sci. 2013 Nov;136(1):51-62. doi: 10.1093/toxsci/kft170. Epub 2013 Aug 2.

13.

2,3,7,8-TCDD enhances the sensitivity of mice to concanavalin A immune-mediated liver injury.

Fullerton AM, Roth RA, Ganey PE.

Toxicol Appl Pharmacol. 2013 Jan 15;266(2):317-27. doi: 10.1016/j.taap.2012.11.009. Epub 2012 Nov 16.

14.

Tumor necrosis factor-alpha potentiates the cytotoxicity of amiodarone in Hepa1c1c7 cells: roles of caspase activation and oxidative stress.

Lu J, Miyakawa K, Roth RA, Ganey PE.

Toxicol Sci. 2013 Jan;131(1):164-78. doi: 10.1093/toxsci/kfs289. Epub 2012 Oct 5.

15.

Comparative NMR-based metabonomic investigation of the metabolic phenotype associated with tienilic acid and tienilic acid isomer.

Coen M, Rademacher PM, Zou W, Scott M, Ganey PE, Roth R, Nelson SD.

Chem Res Toxicol. 2012 Nov 19;25(11):2412-22. doi: 10.1021/tx3002803. Epub 2012 Nov 5.

PMID:
23013248
16.

Complement activation in acetaminophen-induced liver injury in mice.

Singhal R, Ganey PE, Roth RA.

J Pharmacol Exp Ther. 2012 May;341(2):377-85. doi: 10.1124/jpet.111.189837. Epub 2012 Feb 7.

17.

Hypoxia sensitization of hepatocytes to neutrophil elastase-mediated cell death depends on MAPKs and HIF-1α.

Sparkenbaugh EM, Ganey PE, Roth RA.

Am J Physiol Gastrointest Liver Physiol. 2012 Apr;302(7):G748-57. doi: 10.1152/ajpgi.00409.2011. Epub 2012 Jan 5.

18.

Neutrophil-cytokine interactions in a rat model of sulindac-induced idiosyncratic liver injury.

Zou W, Roth RA, Younis HS, Malle E, Ganey PE.

Toxicology. 2011 Dec 18;290(2-3):278-85. doi: 10.1016/j.tox.2011.10.005. Epub 2011 Oct 14.

19.

Amiodarone exposure during modest inflammation induces idiosyncrasy-like liver injury in rats: role of tumor necrosis factor-alpha.

Lu J, Jones AD, Harkema JR, Roth RA, Ganey PE.

Toxicol Sci. 2012 Jan;125(1):126-33. doi: 10.1093/toxsci/kfr266. Epub 2011 Oct 9.

20.

Animal models of idiosyncratic drug-induced liver injury--current status.

Roth RA, Ganey PE.

Crit Rev Toxicol. 2011 Oct;41(9):723-39. doi: 10.3109/10408444.2011.575765. Epub 2011 Jul 4. Review.

PMID:
21726137
21.

The role of hypoxia-inducible factor-1α in acetaminophen hepatotoxicity.

Sparkenbaugh EM, Saini Y, Greenwood KK, LaPres JJ, Luyendyk JP, Copple BL, Maddox JF, Ganey PE, Roth RA.

J Pharmacol Exp Ther. 2011 Aug;338(2):492-502. doi: 10.1124/jpet.111.180521. Epub 2011 May 16.

22.

Natural killer cells mediate severe liver injury in a murine model of halothane hepatitis.

Dugan CM, Fullerton AM, Roth RA, Ganey PE.

Toxicol Sci. 2011 Apr;120(2):507-18. doi: 10.1093/toxsci/kfr005. Epub 2011 Jan 18.

23.

Comparison of TNFα to lipopolysaccharide as an inflammagen to characterize the idiosyncratic hepatotoxicity potential of drugs: Trovafloxacin as an example.

Liguori MJ, Ditewig AC, Maddox JF, Luyendyk JP, Lehman-McKeeman LD, Nelson DM, Bhaskaran VM, Waring JF, Ganey PE, Roth RA, Blomme EA.

Int J Mol Sci. 2010 Nov 18;11(11):4697-714. doi: 10.3390/ijms11114697.

24.

Idiosyncratic drug-induced liver injury and the role of inflammatory stress with an emphasis on an animal model of trovafloxacin hepatotoxicity.

Shaw PJ, Ganey PE, Roth RA.

Toxicol Sci. 2010 Nov;118(1):7-18. doi: 10.1093/toxsci/kfq168. Epub 2010 Jun 10. Review.

25.

Oxidative stress is important in the pathogenesis of liver injury induced by sulindac and lipopolysaccharide cotreatment.

Zou W, Roth RA, Younis HS, Burgoon LD, Ganey PE.

Toxicology. 2010 Jun 4;272(1-3):32-8. doi: 10.1016/j.tox.2010.03.015. Epub 2010 Apr 3.

26.

A mouse model of severe halothane hepatitis based on human risk factors.

Dugan CM, MacDonald AE, Roth RA, Ganey PE.

J Pharmacol Exp Ther. 2010 May;333(2):364-72. doi: 10.1124/jpet.109.164541. Epub 2010 Feb 2.

27.

Acute exposure to ozone exacerbates acetaminophen-induced liver injury in mice.

Aibo DI, Birmingham NP, Lewandowski R, Maddox JF, Roth RA, Ganey PE, Wagner JG, Harkema JR.

Toxicol Sci. 2010 May;115(1):267-85. doi: 10.1093/toxsci/kfq034. Epub 2010 Feb 1.

28.

Intrinsic versus idiosyncratic drug-induced hepatotoxicity--two villains or one?

Roth RA, Ganey PE.

J Pharmacol Exp Ther. 2010 Mar;332(3):692-7. doi: 10.1124/jpet.109.162651. Epub 2009 Dec 17.

29.

Bacterial- and viral-induced inflammation increases sensitivity to acetaminophen hepatotoxicity.

Maddox JF, Amuzie CJ, Li M, Newport SW, Sparkenbaugh E, Cuff CF, Pestka JJ, Cantor GH, Roth RA, Ganey PE.

J Toxicol Environ Health A. 2010;73(1):58-73. doi: 10.1080/15287390903249057.

PMID:
19953420
30.

Inflammatory stress and idiosyncratic hepatotoxicity: hints from animal models.

Deng X, Luyendyk JP, Ganey PE, Roth RA.

Pharmacol Rev. 2009 Sep;61(3):262-82. doi: 10.1124/pr.109.001727. Review.

31.

Sulindac metabolism and synergy with tumor necrosis factor-alpha in a drug-inflammation interaction model of idiosyncratic liver injury.

Zou W, Beggs KM, Sparkenbaugh EM, Jones AD, Younis HS, Roth RA, Ganey PE.

J Pharmacol Exp Ther. 2009 Oct;331(1):114-21. doi: 10.1124/jpet.109.156331. Epub 2009 Jul 28.

32.

Trovafloxacin enhances TNF-induced inflammatory stress and cell death signaling and reduces TNF clearance in a murine model of idiosyncratic hepatotoxicity.

Shaw PJ, Beggs KM, Sparkenbaugh EM, Dugan CM, Ganey PE, Roth RA.

Toxicol Sci. 2009 Oct;111(2):288-301. doi: 10.1093/toxsci/kfp163. Epub 2009 Jul 28.

33.

The role of the hemostatic system in murine liver injury induced by coexposure to lipopolysaccharide and trovafloxacin, a drug with idiosyncratic liability.

Shaw PJ, Fullerton AM, Scott MA, Ganey PE, Roth RA.

Toxicol Appl Pharmacol. 2009 May 1;236(3):293-300.

PMID:
19367693
34.

Trovafloxacin enhances the inflammatory response to a Gram-negative or a Gram-positive bacterial stimulus, resulting in neutrophil-dependent liver injury in mice.

Shaw PJ, Ganey PE, Roth RA.

J Pharmacol Exp Ther. 2009 Jul;330(1):72-8. doi: 10.1124/jpet.109.151068. Epub 2009 Apr 7.

35.

Hepatotoxic interaction of sulindac with lipopolysaccharide: role of the hemostatic system.

Zou W, Devi SS, Sparkenbaugh E, Younis HS, Roth RA, Ganey PE.

Toxicol Sci. 2009 Mar;108(1):184-93. doi: 10.1093/toxsci/kfn259. Epub 2008 Dec 12.

36.

Coexposure of mice to trovafloxacin and lipopolysaccharide, a model of idiosyncratic hepatotoxicity, results in a unique gene expression profile and interferon gamma-dependent liver injury.

Shaw PJ, Ditewig AC, Waring JF, Liguori MJ, Blomme EA, Ganey PE, Roth RA.

Toxicol Sci. 2009 Jan;107(1):270-80. doi: 10.1093/toxsci/kfn205. Epub 2008 Oct 16.

37.

Tumor necrosis factor alpha is a proximal mediator of synergistic hepatotoxicity from trovafloxacin/lipopolysaccharide coexposure.

Shaw PJ, Ganey PE, Roth RA.

J Pharmacol Exp Ther. 2009 Jan;328(1):62-8. doi: 10.1124/jpet.108.143792. Epub 2008 Sep 26.

38.

Gene expression profiles in livers from diclofenac-treated rats reveal intestinal bacteria-dependent and -independent pathways associated with liver injury.

Deng X, Liguori MJ, Sparkenbaugh EM, Waring JF, Blomme EA, Ganey PE, Roth RA.

J Pharmacol Exp Ther. 2008 Dec;327(3):634-44. doi: 10.1124/jpet.108.140335. Epub 2008 Sep 18.

PMID:
18801949
39.

p38 mitogen-activated protein kinase-dependent tumor necrosis factor-alpha-converting enzyme is important for liver injury in hepatotoxic interaction between lipopolysaccharide and ranitidine.

Deng X, Lu J, Lehman-McKeeman LD, Malle E, Crandall DL, Ganey PE, Roth RA.

J Pharmacol Exp Ther. 2008 Jul;326(1):144-52. doi: 10.1124/jpet.108.137497. Epub 2008 Apr 4.

40.

Lipopolysaccharide and trovafloxacin coexposure in mice causes idiosyncrasy-like liver injury dependent on tumor necrosis factor-alpha.

Shaw PJ, Hopfensperger MJ, Ganey PE, Roth RA.

Toxicol Sci. 2007 Nov;100(1):259-66. Epub 2007 Aug 19.

PMID:
17709330
41.

The role of tumor necrosis factor alpha in lipopolysaccharide/ranitidine-induced inflammatory liver injury.

Tukov FF, Luyendyk JP, Ganey PE, Roth RA.

Toxicol Sci. 2007 Nov;100(1):267-80. Epub 2007 Aug 13.

PMID:
17698507
42.

Role of the coagulation system in acetaminophen-induced hepatotoxicity in mice.

Ganey PE, Luyendyk JP, Newport SW, Eagle TM, Maddox JF, Mackman N, Roth RA.

Hepatology. 2007 Oct;46(4):1177-86.

PMID:
17654741
43.

Neutrophil interaction with the hemostatic system contributes to liver injury in rats cotreated with lipopolysaccharide and ranitidine.

Deng X, Luyendyk JP, Zou W, Lu J, Malle E, Ganey PE, Roth RA.

J Pharmacol Exp Ther. 2007 Aug;322(2):852-61. Epub 2007 May 15.

44.

2,2',4,4'-Tetrachlorobiphenyl upregulates cyclooxygenase-2 in HL-60 cells via p38 mitogen-activated protein kinase and NF-kappaB.

Bezdecny SA, Karmaus P, Roth RA, Ganey PE.

Toxicol Appl Pharmacol. 2007 Jun 15;221(3):285-94. Epub 2007 Mar 30.

45.

Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis.

Roberts RA, Ganey PE, Ju C, Kamendulis LM, Rusyn I, Klaunig JE.

Toxicol Sci. 2007 Mar;96(1):2-15. Epub 2006 Nov 22. Review.

PMID:
17122412
46.

Modest inflammation enhances diclofenac hepatotoxicity in rats: role of neutrophils and bacterial translocation.

Deng X, Stachlewitz RF, Liguori MJ, Blomme EA, Waring JF, Luyendyk JP, Maddox JF, Ganey PE, Roth RA.

J Pharmacol Exp Ther. 2006 Dec;319(3):1191-9. Epub 2006 Sep 21.

PMID:
16990511
47.

Anticoagulation and inhibition of nitric oxide synthase influence hepatic hypoxia after monocrotaline exposure.

Copple BL, Roth RA, Ganey PE.

Toxicology. 2006 Aug 15;225(2-3):128-37. Epub 2006 Jun 3.

PMID:
16828949
48.

Modeling inflammation-drug interactions in vitro: a rat Kupffer cell-hepatocyte coculture system.

Tukov FF, Maddox JF, Amacher DE, Bobrowski WF, Roth RA, Ganey PE.

Toxicol In Vitro. 2006 Dec;20(8):1488-99. Epub 2006 May 11.

PMID:
16782301
49.

Unique gene expression and hepatocellular injury in the lipopolysaccharide-ranitidine drug idiosyncrasy rat model: comparison with famotidine.

Luyendyk JP, Lehman-McKeeman LD, Nelson DM, Bhaskaran VM, Reilly TP, Car BD, Cantor GH, Maddox JF, Ganey PE, Roth RA.

Toxicol Sci. 2006 Apr;90(2):569-85. Epub 2006 Jan 16.

PMID:
16415329
50.

Coagulation-dependent gene expression and liver injury in rats given lipopolysaccharide with ranitidine but not with famotidine.

Luyendyk JP, Lehman-McKeeman LD, Nelson DM, Bhaskaran VM, Reilly TP, Car BD, Cantor GH, Deng X, Maddox JF, Ganey PE, Roth RA.

J Pharmacol Exp Ther. 2006 May;317(2):635-43. Epub 2006 Jan 9.

PMID:
16401727

Supplemental Content

Loading ...
Support Center