Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 26

1.

Author Correction: Multi-omics analysis of multiple missions to space reveal a theme of lipid dysregulation in mouse liver.

Beheshti A, Chakravarty K, Fogle H, Fazelinia H, Silveira WAD, Boyko V, Polo SL, Saravia-Butler AM, Hardiman G, Taylor D, Galazka JM, Costes SV.

Sci Rep. 2020 Jan 27;10(1):1517. doi: 10.1038/s41598-020-58490-w.

2.

Multi-omics analysis of multiple missions to space reveal a theme of lipid dysregulation in mouse liver.

Beheshti A, Chakravarty K, Fogle H, Fazelinia H, Silveira WAD, Boyko V, Polo SL, Saravia-Butler AM, Hardiman G, Taylor D, Galazka JM, Costes SV.

Sci Rep. 2019 Dec 16;9(1):19195. doi: 10.1038/s41598-019-55869-2. Erratum in: Sci Rep. 2020 Jan 27;10(1):1517.

3.

Seeded Chain-Growth Polymerization of Proteins in Living Bacterial Cells.

Bowen CH, Reed TJ, Sargent CJ, Mpamo B, Galazka JM, Zhang F.

ACS Synth Biol. 2019 Dec 20;8(12):2651-2658. doi: 10.1021/acssynbio.9b00362. Epub 2019 Nov 19.

PMID:
31742389
4.

Mice Exposed to Combined Chronic Low-Dose Irradiation and Modeled Microgravity Develop Long-Term Neurological Sequelae.

Overbey EG, Paul AM, da Silveira WA, Tahimic CGT, Reinsch SS, Szewczyk N, Stanbouly S, Wang C, Galazka JM, Mao XW.

Int J Mol Sci. 2019 Aug 22;20(17). pii: E4094. doi: 10.3390/ijms20174094.

5.

Exploring the Effects of Spaceflight on Mouse Physiology using the Open Access NASA GeneLab Platform.

Beheshti A, Shirazi-Fard Y, Choi S, Berrios D, Gebre SG, Galazka JM, Costes SV.

J Vis Exp. 2019 Jan 13;(143). doi: 10.3791/58447.

PMID:
30688299
6.

GeneLab: Omics database for spaceflight experiments.

Ray S, Gebre S, Fogle H, Berrios DC, Tran PB, Galazka JM, Costes SV.

Bioinformatics. 2019 May 15;35(10):1753-1759. doi: 10.1093/bioinformatics/bty884.

PMID:
30329036
7.

Recombinant Spidroins Fully Replicate Primary Mechanical Properties of Natural Spider Silk.

Bowen CH, Dai B, Sargent CJ, Bai W, Ladiwala P, Feng H, Huang W, Kaplan DL, Galazka JM, Zhang F.

Biomacromolecules. 2018 Sep 10;19(9):3853-3860. doi: 10.1021/acs.biomac.8b00980. Epub 2018 Aug 20.

PMID:
30080972
8.

Developing a Cas9-based tool to engineer native plasmids in Synechocystis sp. PCC 6803.

Xiao Y, Wang S, Rommelfanger S, Balassy A, Barba-Ostria C, Gu P, Galazka JM, Zhang F.

Biotechnol Bioeng. 2018 Sep;115(9):2305-2314. doi: 10.1002/bit.26747. Epub 2018 Jun 29.

PMID:
29896914
9.

Normal chromosome conformation depends on subtelomeric facultative heterochromatin in Neurospora crassa.

Klocko AD, Ormsby T, Galazka JM, Leggett NA, Uesaka M, Honda S, Freitag M, Selker EU.

Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):15048-15053. doi: 10.1073/pnas.1615546113. Epub 2016 Nov 16.

10.

Neurospora chromosomes are organized by blocks of importin alpha-dependent heterochromatin that are largely independent of H3K9me3.

Galazka JM, Klocko AD, Uesaka M, Honda S, Selker EU, Freitag M.

Genome Res. 2016 Aug;26(8):1069-80. doi: 10.1101/gr.203182.115. Epub 2016 Jun 3.

11.

Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).

Soyer JL, Möller M, Schotanus K, Connolly LR, Galazka JM, Freitag M, Stukenbrock EH.

Fungal Genet Biol. 2015 Jun;79:63-70. doi: 10.1016/j.fgb.2015.03.006. Epub 2015 Apr 7.

12.

Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae.

Lin Y, Chomvong K, Acosta-Sampson L, Estrela R, Galazka JM, Kim SR, Jin YS, Cate JH.

Biotechnol Biofuels. 2014 Aug 27;7(1):126. doi: 10.1186/s13068-014-0126-6. eCollection 2014.

13.

Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose.

Chomvong K, Kordić V, Li X, Bauer S, Gillespie AE, Ha SJ, Oh EJ, Galazka JM, Jin YS, Cate JH.

Biotechnol Biofuels. 2014 Jun 7;7:85. doi: 10.1186/1754-6834-7-85. eCollection 2014.

14.

Variability of chromosome structure in pathogenic fungi--of 'ends and odds'.

Galazka JM, Freitag M.

Curr Opin Microbiol. 2014 Aug;20:19-26. doi: 10.1016/j.mib.2014.04.002. Epub 2014 May 16. Review.

15.

Evidence for transceptor function of cellodextrin transporters in Neurospora crassa.

Znameroski EA, Li X, Tsai JC, Galazka JM, Glass NL, Cate JH.

J Biol Chem. 2014 Jan 31;289(5):2610-9. doi: 10.1074/jbc.M113.533273. Epub 2013 Dec 16.

16.

Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation.

Kim H, Lee WH, Galazka JM, Cate JH, Jin YS.

Appl Microbiol Biotechnol. 2014 Feb;98(3):1087-94. doi: 10.1007/s00253-013-5339-2. Epub 2013 Nov 5.

PMID:
24190499
17.

Investigation of the functional role of aldose 1-epimerase in engineered cellobiose utilization.

Li S, Ha SJ, Kim HJ, Galazka JM, Cate JH, Jin YS, Zhao H.

J Biotechnol. 2013 Oct 10;168(1):1-6. doi: 10.1016/j.jbiotec.2013.08.003. Epub 2013 Aug 14.

PMID:
23954547
18.

Single amino acid substitutions in HXT2.4 from Scheffersomyces stipitis lead to improved cellobiose fermentation by engineered Saccharomyces cerevisiae.

Ha SJ, Kim H, Lin Y, Jang MU, Galazka JM, Kim TJ, Cate JH, Jin YS.

Appl Environ Microbiol. 2013 Mar;79(5):1500-7. doi: 10.1128/AEM.03253-12. Epub 2012 Dec 21.

19.

Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters.

Ha SJ, Galazka JM, Joong Oh E, Kordić V, Kim H, Jin YS, Cate JH.

Metab Eng. 2013 Jan;15:134-43. doi: 10.1016/j.ymben.2012.11.005. Epub 2012 Nov 22.

PMID:
23178501
20.

Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae.

Oh EJ, Ha SJ, Rin Kim S, Lee WH, Galazka JM, Cate JH, Jin YS.

Metab Eng. 2013 Jan;15:226-34. doi: 10.1016/j.ymben.2012.09.003. Epub 2012 Oct 24.

PMID:
23103205
21.

Centromeres of filamentous fungi.

Smith KM, Galazka JM, Phatale PA, Connolly LR, Freitag M.

Chromosome Res. 2012 Jul;20(5):635-56. doi: 10.1007/s10577-012-9290-3. Review.

22.

Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain.

Ha SJ, Wei Q, Kim SR, Galazka JM, Cate JH, Jin YS.

Appl Environ Microbiol. 2011 Aug 15;77(16):5822-5. doi: 10.1128/AEM.05228-11. Epub 2011 Jun 24. Erratum in: Appl Environ Microbiol. 2011 Oct;77(20):7438. Cate, Jamie [corrected to Cate, Jamie H D].

23.

A new diet for yeast to improve biofuel production.

Galazka JM, Cate JH.

Bioeng Bugs. 2011 Jul-Aug;2(4):199-202. doi: 10.4161/bbug.2.4.15624. Epub 2011 Jul 1.

24.

Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation.

Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass NL, Cate JH, Jin YS.

Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):504-9. doi: 10.1073/pnas.1010456108. Epub 2010 Dec 27.

25.

Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae.

Li S, Du J, Sun J, Galazka JM, Glass NL, Cate JH, Yang X, Zhao H.

Mol Biosyst. 2010 Nov;6(11):2129-32. doi: 10.1039/c0mb00063a. Epub 2010 Sep 27.

PMID:
20871937
26.

Cellodextrin transport in yeast for improved biofuel production.

Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH.

Science. 2010 Oct 1;330(6000):84-6. doi: 10.1126/science.1192838. Epub 2010 Sep 9.

Supplemental Content

Loading ...
Support Center