Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 52

1.

Disease Specific Bacterial Communities in a Coralline Algae of the Northwestern Mediterranean Sea: A Combined Culture Dependent and -Independent Approach.

Quéré G, Intertaglia L, Payri C, Galand PE.

Front Microbiol. 2019 Aug 28;10:1850. doi: 10.3389/fmicb.2019.01850. eCollection 2019.

2.

The Tara Pacific expedition-A pan-ecosystemic approach of the "-omics" complexity of coral reef holobionts across the Pacific Ocean.

Planes S, Allemand D, Agostini S, Banaigs B, Boissin E, Boss E, Bourdin G, Bowler C, Douville E, Flores JM, Forcioli D, Furla P, Galand PE, Ghiglione JF, Gilson E, Lombard F, Moulin C, Pesant S, Poulain J, Reynaud S, Romac S, Sullivan MB, Sunagawa S, Thomas OP, Troublé R, de Vargas C, Vega Thurber R, Voolstra CR, Wincker P, Zoccola D; Tara Pacific Consortium.

PLoS Biol. 2019 Sep 23;17(9):e3000483. doi: 10.1371/journal.pbio.3000483. eCollection 2019 Sep.

3.

Long-term aquaria study suggests species-specific responses of two cold-water corals to macro-and microplastics exposure.

Mouchi V, Chapron L, Peru E, Pruski AM, Meistertzheim AL, Vétion G, Galand PE, Lartaud F.

Environ Pollut. 2019 Oct;253:322-329. doi: 10.1016/j.envpol.2019.07.024. Epub 2019 Jul 9.

PMID:
31323615
4.

Genomic ecology of Marine Group II, the most common marine planktonic Archaea across the surface ocean.

Pereira O, Hochart C, Auguet JC, Debroas D, Galand PE.

Microbiologyopen. 2019 Sep;8(9):e00852. doi: 10.1002/mbo3.852. Epub 2019 Jul 2.

5.

The Effect of Captivity on the Dynamics of Active Bacterial Communities Differs Between Two Deep-Sea Coral Species.

Galand PE, Chapron L, Meistertzheim AL, Peru E, Lartaud F.

Front Microbiol. 2018 Oct 29;9:2565. doi: 10.3389/fmicb.2018.02565. eCollection 2018.

6.

Macro- and microplastics affect cold-water corals growth, feeding and behaviour.

Chapron L, Peru E, Engler A, Ghiglione JF, Meistertzheim AL, Pruski AM, Purser A, Vétion G, Galand PE, Lartaud F.

Sci Rep. 2018 Oct 17;8(1):15299. doi: 10.1038/s41598-018-33683-6.

7.

Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations.

Lambert S, Tragin M, Lozano JC, Ghiglione JF, Vaulot D, Bouget FY, Galand PE.

ISME J. 2019 Feb;13(2):388-401. doi: 10.1038/s41396-018-0281-z. Epub 2018 Sep 25.

PMID:
30254323
8.

Co-occurring nematodes and bacteria in submarine canyon sediments.

Rzeznik-Orignac J, Puisay A, Derelle E, Peru E, Le Bris N, Galand PE.

PeerJ. 2018 Jul 31;6:e5396. doi: 10.7717/peerj.5396. eCollection 2018.

9.

A strong link between marine microbial community composition and function challenges the idea of functional redundancy.

Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D.

ISME J. 2018 Oct;12(10):2470-2478. doi: 10.1038/s41396-018-0158-1. Epub 2018 Jun 20.

10.

Metal contaminations impact archaeal community composition, abundance and function in remote alpine lakes.

Compte-Port S, Borrego CM, Moussard H, Jeanbille M, Restrepo-Ortiz CX, de Diego A, Rodriguez-Iruretagoiena A, Gredilla A, Fdez-Ortiz de Vallejuelo S, Galand PE, Kalenitchenko D, Rols JL, Pokrovsky OS, Gonzalez AG, Camarero L, Muñiz S, Navarro-Navarro E, Auguet JC.

Environ Microbiol. 2018 Jul;20(7):2422-2437. doi: 10.1111/1462-2920.14252. Epub 2018 May 22.

PMID:
29687572
11.

Distribution of greenhouse gases in hyper-arid and arid areas of northern Chile and the contribution of the high altitude wetland microbiome (Salar de Huasco, Chile).

Molina V, Eissler Y, Cornejo M, Galand PE, Dorador C, Hengst M, Fernandez C, Francois JP.

Antonie Van Leeuwenhoek. 2018 Aug;111(8):1421-1432. doi: 10.1007/s10482-018-1078-9. Epub 2018 Apr 6.

PMID:
29626330
12.

Ultrarare marine microbes contribute to key sulphur-related ecosystem functions.

Kalenitchenko D, Le Bris N, Peru E, Galand PE.

Mol Ecol. 2018 Mar;27(6):1494-1504. doi: 10.1111/mec.14513. Epub 2018 Mar 14.

PMID:
29412497
13.

The early conversion of deep-sea wood falls into chemosynthetic hotspots revealed by in situ monitoring.

Kalenitchenko D, Péru E, Contreira Pereira L, Petetin C, Galand PE, Le Bris N.

Sci Rep. 2018 Jan 17;8(1):907. doi: 10.1038/s41598-017-17463-2.

14.

Bacteria alone establish the chemical basis of the wood-fall chemosynthetic ecosystem in the deep-sea.

Kalenitchenko D, Le Bris N, Dadaglio L, Peru E, Besserer A, Galand PE.

ISME J. 2018 Feb;12(2):367-379. doi: 10.1038/ismej.2017.163. Epub 2017 Oct 6.

15.

Pathobiomes Differ between Two Diseases Affecting Reef Building Coralline Algae.

Meistertzheim AL, Nugues MM, Quéré G, Galand PE.

Front Microbiol. 2017 Sep 1;8:1686. doi: 10.3389/fmicb.2017.01686. eCollection 2017.

16.

Disturbance Increases Microbial Community Diversity and Production in Marine Sediments.

Galand PE, Lucas S, Fagervold SK, Peru E, Pruski AM, Vétion G, Dupuy C, Guizien K.

Front Microbiol. 2016 Dec 2;7:1950. eCollection 2016.

17.

Dense water plumes modulate richness and productivity of deep sea microbes.

Luna GM, Chiggiato J, Quero GM, Schroeder K, Bongiorni L, Kalenitchenko D, Galand PE.

Environ Microbiol. 2016 Dec;18(12):4537-4548. doi: 10.1111/1462-2920.13510. Epub 2016 Sep 23.

PMID:
27555520
18.

Snapshot of a Bacterial Microbiome Shift during the Early Symptoms of a Massive Sponge Die-Off in the Western Mediterranean.

Blanquer A, Uriz MJ, Cebrian E, Galand PE.

Front Microbiol. 2016 May 19;7:752. doi: 10.3389/fmicb.2016.00752. eCollection 2016.

19.

Ecological succession leads to chemosynthesis in mats colonizing wood in sea water.

Kalenitchenko D, Dupraz M, Le Bris N, Petetin C, Rose C, West NJ, Galand PE.

ISME J. 2016 Sep;10(9):2246-58. doi: 10.1038/ismej.2016.12. Epub 2016 Feb 23.

20.

Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters.

Galand PE, Salter I, Kalenitchenko D.

Mol Ecol. 2015 Dec;24(23):5785-95. doi: 10.1111/mec.13347. Epub 2015 Sep 7.

PMID:
26289961
21.

Corrigendum: Archaeal amoA and ureC genes and their transcriptional activity in the Arctic Ocean.

Pedneault E, Galand PE, Potvin M, Tremblay JÉ, Lovejoy C.

Sci Rep. 2015 Jul 7;5:11786. doi: 10.1038/srep11786. No abstract available.

22.

Temporal and spatial constraints on community assembly during microbial colonization of wood in seawater.

Kalenitchenko D, Fagervold SK, Pruski AM, Vétion G, Yücel M, Le Bris N, Galand PE.

ISME J. 2015 Dec;9(12):2657-70. doi: 10.1038/ismej.2015.61. Epub 2015 Apr 17.

23.

Melting glacier impacts community structure of Bacteria, Archaea and Fungi in a Chilean Patagonia fjord.

Gutiérrez MH, Galand PE, Moffat C, Pantoja S.

Environ Microbiol. 2015 Oct;17(10):3882-97. doi: 10.1111/1462-2920.12872. Epub 2015 May 8.

PMID:
25856307
24.

Temporal Dynamics of Active Prokaryotic Nitrifiers and Archaeal Communities from River to Sea.

Hugoni M, Agogué H, Taib N, Domaizon I, Moné A, Galand PE, Bronner G, Debroas D, Mary I.

Microb Ecol. 2015 Aug;70(2):473-83. doi: 10.1007/s00248-015-0601-z. Epub 2015 Apr 8.

PMID:
25851445
25.

Temporal dynamics of active Archaea in oxygen-depleted zones of two deep lakes.

Hugoni M, Domaizon I, Taib N, Biderre-Petit C, Agogué H, Galand PE, Debroas D, Mary I.

Environ Microbiol Rep. 2015 Apr;7(2):321-9. doi: 10.1111/1758-2229.12251. Epub 2015 Jan 23.

PMID:
25472601
26.

Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea.

Salter I, Galand PE, Fagervold SK, Lebaron P, Obernosterer I, Oliver MJ, Suzuki MT, Tricoire C.

ISME J. 2015 Feb;9(2):347-60. doi: 10.1038/ismej.2014.129. Epub 2014 Sep 19.

27.

River organic matter shapes microbial communities in the sediment of the Rhône prodelta.

Fagervold SK, Bourgeois S, Pruski AM, Charles F, Kerhervé P, Vétion G, Galand PE.

ISME J. 2014 Nov;8(11):2327-38. doi: 10.1038/ismej.2014.86. Epub 2014 May 23.

28.

Microbial communities in sunken wood are structured by wood-boring bivalves and location in a submarine canyon.

Fagervold SK, Romano C, Kalenitchenko D, Borowski C, Nunes-Jorge A, Martin D, Galand PE.

PLoS One. 2014 May 7;9(5):e96248. doi: 10.1371/journal.pone.0096248. eCollection 2014.

29.

Archaeal amoA and ureC genes and their transcriptional activity in the Arctic Ocean.

Pedneault E, Galand PE, Potvin M, Tremblay JÉ, Lovejoy C.

Sci Rep. 2014 Apr 11;4:4661. doi: 10.1038/srep04661. Erratum in: Sci Rep. 2015;5:11786.

30.

Small thaw ponds: an unaccounted source of methane in the Canadian high Arctic.

Negandhi K, Laurion I, Whiticar MJ, Galand PE, Xu X, Lovejoy C.

PLoS One. 2013 Nov 13;8(11):e78204. doi: 10.1371/journal.pone.0078204. eCollection 2013.

31.

Removing environmental sources of variation to gain insight on symbionts vs. transient microbes in high and low microbial abundance sponges.

Blanquer A, Uriz MJ, Galand PE.

Environ Microbiol. 2013 Nov;15(11):3008-19. doi: 10.1111/1462-2920.12261. Epub 2013 Oct 3.

PMID:
24118834
32.

Contrasting activity patterns determined by BrdU incorporation in bacterial ribotypes from the Arctic Ocean in winter.

Galand PE, Alonso-Sáez L, Bertilsson S, Lovejoy C, Casamayor EO.

Front Microbiol. 2013 May 20;4:118. doi: 10.3389/fmicb.2013.00118. eCollection 2013.

33.

Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters.

Hugoni M, Taib N, Debroas D, Domaizon I, Jouan Dufournel I, Bronner G, Salter I, Agogué H, Mary I, Galand PE.

Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6004-9. doi: 10.1073/pnas.1216863110. Epub 2013 Mar 27.

34.

Pole-to-pole biogeography of surface and deep marine bacterial communities.

Ghiglione JF, Galand PE, Pommier T, Pedrós-Alió C, Maas EW, Bakker K, Bertilson S, Kirchmanj DL, Lovejoy C, Yager PL, Murray AE.

Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17633-8. doi: 10.1073/pnas.1208160109. Epub 2012 Oct 8.

35.

Vertical distribution of microbial communities in a perennially stratified Arctic lake with saline, anoxic bottom waters.

Comeau AM, Harding T, Galand PE, Vincent WF, Lovejoy C.

Sci Rep. 2012;2:604. doi: 10.1038/srep00604. Epub 2012 Aug 28.

36.

Sulfide production and consumption in degrading wood in the marine environment.

Yücel M, Galand PE, Fagervold SK, Contreira-Pereira L, Le Bris N.

Chemosphere. 2013 Jan;90(2):403-9. doi: 10.1016/j.chemosphere.2012.07.036. Epub 2012 Aug 22.

PMID:
22921659
37.

Sunken woods on the ocean floor provide diverse specialized habitats for microorganisms.

Fagervold SK, Galand PE, Zbinden M, Gaill F, Lebaron P, Palacios C.

FEMS Microbiol Ecol. 2012 Dec;82(3):616-28. doi: 10.1111/j.1574-6941.2012.01432.x. Epub 2012 Jul 9.

38.

Phylogenetic and functional diversity of Bacteria and Archaea in a unique stratified lagoon, the Clipperton atoll (N Pacific).

Galand PE, Bourrain M, De Maistre E, Catala P, Desdevises Y, Elifantz H, Kirchman DL, Lebaron P.

FEMS Microbiol Ecol. 2012 Jan;79(1):203-17. doi: 10.1111/j.1574-6941.2011.01209.x.

39.

Phylogenetic ecology of widespread uncultured clades of the Kingdom Euryarchaeota.

Barberán A, Fernández-Guerra A, Auguet JC, Galand PE, Casamayor EO.

Mol Ecol. 2011 May;20(9):1988-96. doi: 10.1111/j.1365-294X.2011.05057.x. Epub 2011 Mar 14.

PMID:
21395891
40.

High bicarbonate assimilation in the dark by Arctic bacteria.

Alonso-Sáez L, Galand PE, Casamayor EO, Pedrós-Alió C, Bertilsson S.

ISME J. 2010 Dec;4(12):1581-90. doi: 10.1038/ismej.2010.69. Epub 2010 Jun 17.

PMID:
20555365
41.

Ecology of the rare microbial biosphere of the Arctic Ocean.

Galand PE, Casamayor EO, Kirchman DL, Lovejoy C.

Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22427-32. doi: 10.1073/pnas.0908284106. Epub 2009 Dec 17.

42.

Hydrography shapes bacterial biogeography of the deep Arctic Ocean.

Galand PE, Potvin M, Casamayor EO, Lovejoy C.

ISME J. 2010 Apr;4(4):564-76. doi: 10.1038/ismej.2009.134. Epub 2009 Dec 10.

PMID:
20010630
43.

Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing.

Galand PE, Casamayor EO, Kirchman DL, Potvin M, Lovejoy C.

ISME J. 2009 Jul;3(7):860-9. doi: 10.1038/ismej.2009.23. Epub 2009 Mar 26. Erratum in: ISME J. 2009 Sep;3(9):1116.

PMID:
19322244
44.

Vertical structure of archaeal communities and the distribution of ammonia monooxygenase A gene variants in two meromictic High Arctic lakes.

Pouliot J, Galand PE, Lovejoy C, Vincent WF.

Environ Microbiol. 2009 Mar;11(3):687-99. doi: 10.1111/j.1462-2920.2008.01846.x. Epub 2009 Jan 15.

PMID:
19207564
45.

Archaeal diversity and a gene for ammonia oxidation are coupled to oceanic circulation.

Galand PE, Lovejoy C, Hamilton AK, Ingram RG, Pedneault E, Carmack EC.

Environ Microbiol. 2009 Apr;11(4):971-80. doi: 10.1111/j.1462-2920.2008.01822.x. Epub 2008 Dec 10.

PMID:
19077007
46.

Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene.

Juottonen H, Galand PE, Yrjälä K.

Res Microbiol. 2006 Dec;157(10):914-21. Epub 2006 Oct 5.

PMID:
17070673
47.

Methanogen communities along a primary succession transect of mire ecosystems.

Merilä P, Galand PE, Fritze H, Tuittila ES, Kukko-Oja K, Laine J, Yrjälä K.

FEMS Microbiol Ecol. 2006 Feb;55(2):221-9.

48.

Methanogen communities and Bacteria along an ecohydrological gradient in a northern raised bog complex.

Juottonen H, Galand PE, Tuittila ES, Laine J, Fritze H, Yrjälä K.

Environ Microbiol. 2005 Oct;7(10):1547-57.

PMID:
16156728
49.

Methanogen communities in a drained bog: effect of ash fertilization.

Galand PE, Juottonen H, Fritze H, Yrjälä K.

Microb Ecol. 2005 Feb;49(2):209-17. Epub 2005 Jun 17.

PMID:
15965727
50.

Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems.

Galand PE, Fritze H, Conrad R, Yrjälä K.

Appl Environ Microbiol. 2005 Apr;71(4):2195-8.

Supplemental Content

Loading ...
Support Center