Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 46

1.

Excessive rDNA Transcription Drives the Disruption in Nuclear Homeostasis during Entry into Senescence in Budding Yeast.

Morlot S, Song J, Léger-Silvestre I, Matifas A, Gadal O, Charvin G.

Cell Rep. 2019 Jul 9;28(2):408-422.e4. doi: 10.1016/j.celrep.2019.06.032.

2.

Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I.

Darrière T, Pilsl M, Sarthou MK, Chauvier A, Genty T, Audibert S, Dez C, Léger-Silvestre I, Normand C, Henras AK, Kwapisz M, Calvo O, Fernández-Tornero C, Tschochner H, Gadal O.

PLoS Genet. 2019 May 28;15(5):e1008157. doi: 10.1371/journal.pgen.1008157. eCollection 2019 May.

3.

A ribosome assembly stress response regulates transcription to maintain proteome homeostasis.

Albert B, Kos-Braun IC, Henras AK, Dez C, Rueda MP, Zhang X, Gadal O, Kos M, Shore D.

Elife. 2019 May 24;8. pii: e45002. doi: 10.7554/eLife.45002.

4.

Rouse model with transient intramolecular contacts on a timescale of seconds recapitulates folding and fluctuation of yeast chromosomes.

Socol M, Wang R, Jost D, Carrivain P, Vaillant C, Le Cam E, Dahirel V, Normand C, Bystricky K, Victor JM, Gadal O, Bancaud A.

Nucleic Acids Res. 2019 Jul 9;47(12):6195-6207. doi: 10.1093/nar/gkz374.

5.

Meeting report from the first European OddPols meeting: Toulouse 2018.

Dauban L, Cerezo E, Henras A, Gadal O.

Gene. 2019 Jun 20;702:215-219. doi: 10.1016/j.gene.2018.12.051. Epub 2019 Jan 4.

PMID:
30611841
6.

Nuclear envelope expansion in budding yeast is independent of cell growth and does not determine nuclear volume.

Walters AD, Amoateng K, Wang R, Chen JH, McDermott G, Larabell CA, Gadal O, Cohen-Fix O.

Mol Biol Cell. 2019 Jan 1;30(1):131-145. doi: 10.1091/mbc.E18-04-0204. Epub 2018 Oct 31.

7.

Turnover of aberrant pre-40S pre-ribosomal particles is initiated by a novel endonucleolytic decay pathway.

Choque E, Schneider C, Gadal O, Dez C.

Nucleic Acids Res. 2018 May 18;46(9):4699-4714. doi: 10.1093/nar/gky116.

8.

High resolution microscopy reveals the nuclear shape of budding yeast during cell cycle and in various biological states.

Wang R, Kamgoue A, Normand C, Léger-Silvestre I, Mangeat T, Gadal O.

J Cell Sci. 2016 Dec 15;129(24):4480-4495. Epub 2016 Nov 9.

9.

High-Throughput Live-Cell Microscopy Analysis of Association Between Chromosome Domains and the Nucleolus in S. cerevisiae.

Wang R, Normand C, Gadal O.

Methods Mol Biol. 2016;1455:41-57. doi: 10.1007/978-1-4939-3792-9_4.

PMID:
27576709
10.

Correlative Light and Electron Microscopy of Nucleolar Transcription in Saccharomyces cerevisiae.

Normand C, Berthaud M, Gadal O, Léger-Silvestre I.

Methods Mol Biol. 2016;1455:29-40. doi: 10.1007/978-1-4939-3792-9_3.

PMID:
27576708
11.

Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III-transcribed genes in budding yeast.

Belagal P, Normand C, Shukla A, Wang R, Léger-Silvestre I, Dez C, Bhargava P, Gadal O.

Mol Biol Cell. 2016 Oct 15;27(20):3164-3177. Epub 2016 Aug 24.

12.

Principles of chromatin organization in yeast: relevance of polymer models to describe nuclear organization and dynamics.

Wang R, Mozziconacci J, Bancaud A, Gadal O.

Curr Opin Cell Biol. 2015 Jun;34:54-60. doi: 10.1016/j.ceb.2015.04.004. Epub 2015 May 15. Review.

13.

High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome.

Hajjoul H, Mathon J, Ranchon H, Goiffon I, Mozziconacci J, Albert B, Carrivain P, Victor JM, Gadal O, Bystricky K, Bancaud A.

Genome Res. 2013 Nov;23(11):1829-38. doi: 10.1101/gr.157008.113. Epub 2013 Sep 27.

14.

Structure-function analysis of Hmo1 unveils an ancestral organization of HMG-Box factors involved in ribosomal DNA transcription from yeast to human.

Albert B, Colleran C, Léger-Silvestre I, Berger AB, Dez C, Normand C, Perez-Fernandez J, McStay B, Gadal O.

Nucleic Acids Res. 2013 Dec;41(22):10135-49. doi: 10.1093/nar/gkt770. Epub 2013 Sep 9.

15.

Systematic characterization of the conformation and dynamics of budding yeast chromosome XII.

Albert B, Mathon J, Shukla A, Saad H, Normand C, Léger-Silvestre I, Villa D, Kamgoue A, Mozziconacci J, Wong H, Zimmer C, Bhargava P, Bancaud A, Gadal O.

J Cell Biol. 2013 Jul 22;202(2):201-10. doi: 10.1083/jcb.201208186.

16.

The Hog1 stress-activated protein kinase targets nucleoporins to control mRNA export upon stress.

Regot S, de Nadal E, Rodríguez-Navarro S, González-Novo A, Pérez-Fernandez J, Gadal O, Seisenbacher G, Ammerer G, Posas F.

J Biol Chem. 2013 Jun 14;288(24):17384-98. doi: 10.1074/jbc.M112.444042. Epub 2013 May 3. Erratum in: J Biol Chem. 2015 Jan 23;290(4):2301.

17.

Mutations in TFIIH causing trichothiodystrophy are responsible for defects in ribosomal RNA production and processing.

Nonnekens J, Perez-Fernandez J, Theil AF, Gadal O, Bonnart C, Giglia-Mari G.

Hum Mol Genet. 2013 Jul 15;22(14):2881-93. doi: 10.1093/hmg/ddt143. Epub 2013 Apr 4.

PMID:
23562818
18.

Old drug, new target: ellipticines selectively inhibit RNA polymerase I transcription.

Andrews WJ, Panova T, Normand C, Gadal O, Tikhonova IG, Panov KI.

J Biol Chem. 2013 Feb 15;288(7):4567-82. doi: 10.1074/jbc.M112.411611. Epub 2013 Jan 4.

19.

The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast.

Reiter A, Hamperl S, Seitz H, Merkl P, Perez-Fernandez J, Williams L, Gerber J, Németh A, Léger I, Gadal O, Milkereit P, Griesenbeck J, Tschochner H.

EMBO J. 2012 Aug 15;31(16):3480-93. doi: 10.1038/emboj.2012.185. Epub 2012 Jul 17.

20.

Regulation of ribosomal RNA production by RNA polymerase I: does elongation come first?

Albert B, Perez-Fernandez J, Léger-Silvestre I, Gadal O.

Genet Res Int. 2012;2012:276948. doi: 10.1155/2012/276948. Epub 2012 Jan 12.

21.

Nuclear organization and chromatin dynamics in yeast: biophysical models or biologically driven interactions?

Albert B, Léger-Silvestre I, Normand C, Gadal O.

Biochim Biophys Acta. 2012 Jun;1819(6):468-81. doi: 10.1016/j.bbagrm.2011.12.010. Epub 2012 Jan 5. Review.

PMID:
22245105
22.

The nucleolar protein Nop19p interacts preferentially with Utp25p and Dhr2p and is essential for the production of the 40S ribosomal subunit in Saccharomyces cerevisiae.

Choque E, Marcellin M, Burlet-Schiltz O, Gadal O, Dez C.

RNA Biol. 2011 Nov-Dec;8(6):1158-72. doi: 10.4161/rna.8.6.17699. Epub 2011 Nov 1.

23.

RNA polymerase I-specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle.

Albert B, Léger-Silvestre I, Normand C, Ostermaier MK, Pérez-Fernández J, Panov KI, Zomerdijk JC, Schultz P, Gadal O.

J Cell Biol. 2011 Jan 24;192(2):277-93. doi: 10.1083/jcb.201006040.

24.

Genome organization and function: a view from yeast and Arabidopsis.

Sáez-Vásquez J, Gadal O.

Mol Plant. 2010 Jul;3(4):678-90. doi: 10.1093/mp/ssq034. Epub 2010 Jul 1. Review.

25.

High-resolution statistical mapping reveals gene territories in live yeast.

Berger AB, Cabal GG, Fabre E, Duong T, Buc H, Nehrbass U, Olivo-Marin JC, Gadal O, Zimmer C.

Nat Methods. 2008 Dec;5(12):1031-7. doi: 10.1038/nmeth.1266. Epub 2008 Nov 2.

PMID:
18978785
26.

Cell cycle-dependent kinetochore localization of condensin complex in Saccharomyces cerevisiae.

Bachellier-Bassi S, Gadal O, Bourout G, Nehrbass U.

J Struct Biol. 2008 May;162(2):248-59. doi: 10.1016/j.jsb.2008.01.002. Epub 2008 Jan 11.

PMID:
18296067
27.

Two RNA polymerase I subunits control the binding and release of Rrn3 during transcription.

Beckouet F, Labarre-Mariotte S, Albert B, Imazawa Y, Werner M, Gadal O, Nogi Y, Thuriaux P.

Mol Cell Biol. 2008 Mar;28(5):1596-605. Epub 2007 Dec 17.

28.

Hmo1 is required for TOR-dependent regulation of ribosomal protein gene transcription.

Berger AB, Decourty L, Badis G, Nehrbass U, Jacquier A, Gadal O.

Mol Cell Biol. 2007 Nov;27(22):8015-26. Epub 2007 Sep 17.

29.

RNA polymerase I-specific subunit CAST/hPAF49 has a role in the activation of transcription by upstream binding factor.

Panov KI, Panova TB, Gadal O, Nishiyama K, Saito T, Russell J, Zomerdijk JC.

Mol Cell Biol. 2006 Jul;26(14):5436-48.

30.

SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope.

Cabal GG, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O, Lesne A, Buc H, Feuerbach-Fournier F, Olivo-Marin JC, Hurt EC, Nehrbass U.

Nature. 2006 Jun 8;441(7094):770-3.

PMID:
16760982
31.

Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1.

Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U.

Cell. 2004 Jan 9;116(1):63-73.

32.

Role of second-largest RNA polymerase I subunit Zn-binding domain in enzyme assembly.

Naryshkina T, Bruning A, Gadal O, Severinov K.

Eukaryot Cell. 2003 Oct;2(5):1046-52.

33.

Nuclear structure and intranuclear retention of premature RNAs.

Gadal O, Nehrbass U.

J Struct Biol. 2002 Oct-Dec;140(1-3):140-6. Review.

PMID:
12490162
34.

A Noc complex specifically involved in the formation and nuclear export of ribosomal 40 S subunits.

Milkereit P, Strauss D, Bassler J, Gadal O, Kühn H, Schütz S, Gas N, Lechner J, Hurt E, Tschochner H.

J Biol Chem. 2003 Feb 7;278(6):4072-81. Epub 2002 Nov 20.

35.

Hmo1, an HMG-box protein, belongs to the yeast ribosomal DNA transcription system.

Gadal O, Labarre S, Boschiero C, Thuriaux P.

EMBO J. 2002 Oct 15;21(20):5498-507.

36.

Rlp7p is associated with 60S preribosomes, restricted to the granular component of the nucleolus, and required for pre-rRNA processing.

Gadal O, Strauss D, Petfalski E, Gleizes PE, Gas N, Tollervey D, Hurt E.

J Cell Biol. 2002 Jun 10;157(6):941-51. Epub 2002 Jun 10.

37.

The nucle(ol)ar Tif6p and Efl1p are required for a late cytoplasmic step of ribosome synthesis.

Senger B, Lafontaine DL, Graindorge JS, Gadal O, Camasses A, Sanni A, Garnier JM, Breitenbach M, Hurt E, Fasiolo F.

Mol Cell. 2001 Dec;8(6):1363-73.

38.

Identification of a 60S preribosomal particle that is closely linked to nuclear export.

Bassler J, Grandi P, Gadal O, Lessmann T, Petfalski E, Tollervey D, Lechner J, Hurt E.

Mol Cell. 2001 Sep;8(3):517-29.

39.

A nuclear AAA-type ATPase (Rix7p) is required for biogenesis and nuclear export of 60S ribosomal subunits.

Gadal O, Strauss D, Braspenning J, Hoepfner D, Petfalski E, Philippsen P, Tollervey D, Hurt E.

EMBO J. 2001 Jul 16;20(14):3695-704.

40.

Maturation and intranuclear transport of pre-ribosomes requires Noc proteins.

Milkereit P, Gadal O, Podtelejnikov A, Trumtel S, Gas N, Petfalski E, Tollervey D, Mann M, Hurt E, Tschochner H.

Cell. 2001 May 18;105(4):499-509.

41.
42.

Cross talk between tRNA and rRNA synthesis in Saccharomyces cerevisiae.

Briand JF, Navarro F, Gadal O, Thuriaux P.

Mol Cell Biol. 2001 Jan;21(1):189-95.

43.

Functional conservation of RNA polymerase II in fission and budding yeasts.

Shpakovski GV, Gadal O, Labarre-Mariotte S, Lebedenko EN, Miklos I, Sakurai H, Proshkin SA, Van Mullem V, Ishihama A, Thuriaux P.

J Mol Biol. 2000 Feb 4;295(5):1119-27.

PMID:
10653691
44.

A protein-protein interaction map of yeast RNA polymerase III.

Flores A, Briand JF, Gadal O, Andrau JC, Rubbi L, Van Mullem V, Boschiero C, Goussot M, Marck C, Carles C, Thuriaux P, Sentenac A, Werner M.

Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7815-20.

45.
46.

A34.5, a nonessential component of yeast RNA polymerase I, cooperates with subunit A14 and DNA topoisomerase I to produce a functional rRNA synthesis machine.

Gadal O, Mariotte-Labarre S, Chedin S, Quemeneur E, Carles C, Sentenac A, Thuriaux P.

Mol Cell Biol. 1997 Apr;17(4):1787-95.

Supplemental Content

Support Center