Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 50

1.

Ion selectivity of the Kat1 K+ channel pore.

Nakamura RL, Gaber RF.

Mol Membr Biol. 2009 Aug;26(5):293-308. doi: 10.1080/09687680903188332. Epub 2009 Sep 8.

PMID:
19742379
2.

Hyper- and hyporesponsive mutant forms of the Saccharomyces cerevisiae Ssy1 amino acid sensor.

Poulsen P, Gaber RF, Kielland-Brandt MC.

Mol Membr Biol. 2008 Feb;25(2):164-76. doi: 10.1080/09687680701771917.

PMID:
18307103
3.

Competitive intra- and extracellular nutrient sensing by the transporter homologue Ssy1p.

Wu B, Ottow K, Poulsen P, Gaber RF, Albers E, Kielland-Brandt MC.

J Cell Biol. 2006 May 8;173(3):327-31. Epub 2006 May 1.

4.
5.

Amino acid sensing by Ssy1.

Poulsen P, Wu B, Gaber RF, Ottow K, Andersen HA, Kielland-Brandt MC.

Biochem Soc Trans. 2005 Feb;33(Pt 1):261-4.

PMID:
15667321
6.

Constitutive and hyperresponsive signaling by mutant forms of Saccharomyces cerevisiae amino acid sensor Ssy1.

Gaber RF, Ottow K, Andersen HA, Kielland-Brandt MC.

Eukaryot Cell. 2003 Oct;2(5):922-9.

7.

Functional interactions between Hsp90 and the co-chaperones Cns1 and Cpr7 in Saccharomyces cerevisiae.

Tesic M, Marsh JA, Cullinan SB, Gaber RF.

J Biol Chem. 2003 Aug 29;278(35):32692-701. Epub 2003 Jun 4.

8.
10.

Studying ion channels using yeast genetics.

Nakamura RL, Gaber RF.

Methods Enzymol. 1998;293:89-104. No abstract available.

PMID:
9711604
11.
12.
13.
14.

Potassium transport by amino acid permeases in Saccharomyces cerevisiae.

Wright MB, Ramos J, Gomez MJ, Moulder K, Scherrer M, Munson G, Gaber RF.

J Biol Chem. 1997 May 23;272(21):13647-52.

15.

Determination of key structural requirements of a K+ channel pore.

Nakamura RL, Anderson JA, Gaber RF.

J Biol Chem. 1997 Jan 10;272(2):1011-8.

16.

A cyclophilin function in Hsp90-dependent signal transduction.

Duina AA, Chang HC, Marsh JA, Lindquist S, Gaber RF.

Science. 1996 Dec 6;274(5293):1713-5.

PMID:
8939862
20.

Multiple genes, tissue specificity, and expression-dependent modulationcontribute to the functional diversity of potassium channels in Arabidopsis thaliana.

Cao Y, Ward JM, Kelly WB, Ichida AM, Gaber RF, Anderson JA, Uozumi N, Schroeder JI, Crawford NM.

Plant Physiol. 1995 Nov;109(3):1093-106.

21.

Expression of an Arabidopsis potassium channel gene in guard cells.

Nakamura RL, McKendree WL Jr, Hirsch RE, Sedbrook JC, Gaber RF, Sussman MR.

Plant Physiol. 1995 Oct;109(2):371-4.

22.

Mutations sensitizing yeast cells to the start inhibitor nalidixic acid.

Prendergast JA, Singer RA, Rowley N, Rowley A, Johnston GC, Danos M, Kennedy B, Gaber RF.

Yeast. 1995 May;11(6):537-47.

PMID:
7645344
24.
25.

Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA.

Schachtman DP, Schroeder JI, Lucas WJ, Anderson JA, Gaber RF.

Science. 1992 Dec 4;258(5088):1654-8.

PMID:
8966547
26.

Identification of a novel mammalian member of the NSF/CDC48p/Pas1p/TBP-1 family through heterologous expression in yeast.

PĂ©rier F, Coulter KL, Liang H, Radeke CM, Gaber RF, Vandenberg CA.

FEBS Lett. 1994 Sep 5;351(2):286-90.

27.

Selectable marker replacement in Saccharomyces cerevisiae.

Vidal M, Gaber RF.

Yeast. 1994 Feb;10(2):141-9.

PMID:
8203156
28.

Inward and outward rectifying potassium currents in Saccharomyces cerevisiae mediated by endogenous and heterelogously expressed ion channels.

Bertl A, Anderson JA, Slayman CL, Sentenac H, Gaber RF.

Folia Microbiol (Praha). 1994;39(6):507-9.

PMID:
8550001
29.
30.

Roles of multiple glucose transporters in Saccharomyces cerevisiae.

Ko CH, Liang H, Gaber RF.

Mol Cell Biol. 1993 Jan;13(1):638-48.

31.

Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae.

Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF.

Proc Natl Acad Sci U S A. 1992 May 1;89(9):3736-40.

32.

Genetic and molecular analysis of DNA43 and DNA52: two new cell-cycle genes in Saccharomyces cerevisiae.

Solomon NA, Wright MB, Chang S, Buckley AM, Dumas LB, Gaber RF.

Yeast. 1992 Apr;8(4):273-89.

PMID:
1514326
33.

Molecular genetics of yeast ion transport.

Gaber RF.

Int Rev Cytol. 1992;137:299-353. Review. No abstract available.

PMID:
1330965
35.

RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes.

Vidal M, Strich R, Esposito RE, Gaber RF.

Mol Cell Biol. 1991 Dec;11(12):6306-16.

36.
38.

Direct selection for mutants with increased K+ transport in Saccharomyces cerevisiae.

Vidal M, Buckley AM, Hilger F, Gaber RF.

Genetics. 1990 Jun;125(2):313-20.

39.

TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae.

Ko CH, Buckley AM, Gaber RF.

Genetics. 1990 Jun;125(2):305-12.

40.

HOL1 mutations confer novel ion transport in Saccharomyces cerevisiae.

Gaber RF, Kielland-Brandt MC, Fink GR.

Mol Cell Biol. 1990 Feb;10(2):643-52.

41.
42.
43.

Codon recognition during frameshift suppression in Saccharomyces cerevisiae.

Gaber RF, Culbertson MR.

Mol Cell Biol. 1984 Oct;4(10):2052-61.

44.

Frameshift Suppression in SACCHAROMYCES CEREVISIAE VI. Complete Genetic Map of Twenty-Five Suppressor Genes.

Gaber RF, Mathison L, Edelman I, Culbertson MR.

Genetics. 1983 Mar;103(3):389-407.

45.
48.

Frameshift suppression in Saccharomyces cerevisiae. III. Isolation and genetic properties of group III suppressors.

Cummins CM, Gaber RF, Culbertson MR, Mann R, Fink GR.

Genetics. 1980 Aug;95(4):855-79.

50.

Supplemental Content

Loading ...
Support Center