Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 46

1.

Characterization of plant growth promoting rhizobacteria and their benefits on growth and phosphate nutrition of faba bean and wheat.

Bechtaoui N, Raklami A, Tahiri AI, Benidire L, El Alaoui A, Meddich A, Göttfert M, Oufdou K.

Biol Open. 2019 Jul 19;8(7). pii: bio043968. doi: 10.1242/bio.043968.

2.

Calcium binding to a disordered domain of a type III-secreted protein from a coral pathogen promotes secondary structure formation and catalytic activity.

Hoyer E, Knöppel J, Liebmann M, Steppert M, Raiwa M, Herczynski O, Hanspach E, Zehner S, Göttfert M, Tsushima S, Fahmy K, Oertel J.

Sci Rep. 2019 May 8;9(1):7115. doi: 10.1038/s41598-019-42898-0.

3.

Mutualistic co-evolution of T3SSs during the establishment of symbiotic relationships between Vigna radiata and Bradyrhizobia.

Piromyou P, Songwattana P, Teamtisong K, Tittabutr P, Boonkerd N, Tantasawat PA, Giraud E, Göttfert M, Teaumroong N.

Microbiologyopen. 2019 Jan 9:e781. doi: 10.1002/mbo3.781. [Epub ahead of print]

4.

InnB, a Novel Type III Effector of Bradyrhizobium elkanii USDA61, Controls Symbiosis With Vigna Species.

Nguyen HP, Ratu STN, Yasuda M, Göttfert M, Okazaki S.

Front Microbiol. 2018 Dec 18;9:3155. doi: 10.3389/fmicb.2018.03155. eCollection 2018.

5.

Characterization of a novel MIIA domain-containing protein (MdcE) in Bradyrhizobium spp.

Durán D, Imperial J, Palacios J, Ruiz-Argüeso T, Göttfert M, Zehner S, Rey L.

FEMS Microbiol Lett. 2018 Mar 1;365(5). doi: 10.1093/femsle/fnx276.

PMID:
29281013
6.

Phenotypic and genetic diversity of Moroccan rhizobia isolated from Vicia faba and study of genes that are likely to be involved in their osmotolerance.

Benidire L, Lahrouni M, Daoui K, Fatemi ZEA, Gomez Carmona R, Göttfert M, Oufdou K.

Syst Appl Microbiol. 2018 Jan;41(1):51-61. doi: 10.1016/j.syapm.2017.09.003. Epub 2017 Nov 3.

PMID:
29198596
7.

The Sinorhizobium fredii HH103 MucR1 Global Regulator Is Connected With the nod Regulon and Is Required for Efficient Symbiosis With Lotus burttii and Glycine max cv. Williams.

Acosta-Jurado S, Alias-Villegas C, Navarro-Gómez P, Zehner S, Murdoch PD, Rodríguez-Carvajal MA, Soto MJ, Ollero FJ, Ruiz-Sainz JE, Göttfert M, Vinardell JM.

Mol Plant Microbe Interact. 2016 Sep;29(9):700-712. Epub 2016 Aug 25.

8.

Microcystin-tolerant Rhizobium protects plants and improves nitrogen assimilation in Vicia faba irrigated with microcystin-containing waters.

Lahrouni M, Oufdou K, El Khalloufi F, Benidire L, Albert S, Göttfert M, Caviedes MA, Rodriguez-Llorente ID, Oudra B, Pajuelo E.

Environ Sci Pollut Res Int. 2016 May;23(10):10037-49. doi: 10.1007/s11356-016-6223-2. Epub 2016 Feb 11.

PMID:
26865488
9.

The Sinorhizobium fredii HH103 Genome: A Comparative Analysis With S. fredii Strains Differing in Their Symbiotic Behavior With Soybean.

Vinardell JM, Acosta-Jurado S, Zehner S, Göttfert M, Becker A, Baena I, Blom J, Crespo-Rivas JC, Goesmann A, Jaenicke S, Krol E, McIntosh M, Margaret I, Pérez-Montaño F, Schneiker-Bekel S, Serranía J, Szczepanowski R, Buendía AM, Lloret J, Bonilla I, Pühler A, Ruiz-Sainz JE, Weidner S.

Mol Plant Microbe Interact. 2015 Jul;28(7):811-24. doi: 10.1094/MPMI-12-14-0397-FI. Epub 2015 Jun 15.

10.

The Sinorhizobium meliloti EmrAB efflux system is regulated by flavonoids through a TetR-like regulator (EmrR).

Rossbach S, Kunze K, Albert S, Zehner S, Göttfert M.

Mol Plant Microbe Interact. 2014 Apr;27(4):379-87. doi: 10.1094/MPMI-09-13-0282-R.

11.

The domain of unknown function DUF1521 exhibits metal ion-inducible autocleavage activity - a novel example from a putative effector protein of Vibrio coralliilyticus ATCC BAA-450.

Schirrmeister J, Zocher S, Flor L, Göttfert M, Zehner S.

FEMS Microbiol Lett. 2013 Jun;343(2):177-82. doi: 10.1111/1574-6968.12145. Epub 2013 Apr 17.

12.

Genome Sequence of Sinorhizobium meliloti Rm41.

Weidner S, Baumgarth B, Göttfert M, Jaenicke S, Pühler A, Schneiker-Bekel S, Serrania J, Szczepanowski R, Becker A.

Genome Announc. 2013 Jan;1(1). pii: e00013-12. doi: 10.1128/genomeA.00013-12. Epub 2013 Jan 15.

13.

Characterization of the flavonoid-responsive regulator FrrA and its binding sites.

Wenzel M, Lang K, Günther T, Bhandari A, Weiss A, Lulchev P, Szentgyörgyi E, Kranzusch B, Göttfert M.

J Bacteriol. 2012 May;194(9):2363-70. doi: 10.1128/JB.06567-11. Epub 2012 Mar 2.

14.

Genome sequence of the soybean symbiont Sinorhizobium fredii HH103.

Weidner S, Becker A, Bonilla I, Jaenicke S, Lloret J, Margaret I, Pühler A, Ruiz-Sainz JE, Schneiker-Bekel S, Szczepanowski R, Vinardell JM, Zehner S, Göttfert M.

J Bacteriol. 2012 Mar;194(6):1617-8. doi: 10.1128/JB.06729-11.

15.

Characterization of the self-cleaving effector protein NopE1 of Bradyrhizobium japonicum.

Schirrmeister J, Friedrich L, Wenzel M, Hoppe M, Wolf C, Göttfert M, Zehner S.

J Bacteriol. 2011 Aug;193(15):3733-9. doi: 10.1128/JB.00437-11. Epub 2011 Jun 3.

16.

Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean.

Margaret I, Becker A, Blom J, Bonilla I, Goesmann A, Göttfert M, Lloret J, Mittard-Runte V, Rückert C, Ruiz-Sainz JE, Vinardell JM, Weidner S.

J Biotechnol. 2011 Aug 20;155(1):11-9. doi: 10.1016/j.jbiotec.2011.03.016. Epub 2011 Mar 30. Review.

PMID:
21458507
17.

Identification and functional analysis of type III effector proteins in Mesorhizobium loti.

Okazaki S, Okabe S, Higashi M, Shimoda Y, Sato S, Tabata S, Hashiguchi M, Akashi R, Göttfert M, Saeki K.

Mol Plant Microbe Interact. 2010 Feb;23(2):223-34. doi: 10.1094/MPMI-23-2-0223.

18.

The type III-secreted protein NopE1 affects symbiosis and exhibits a calcium-dependent autocleavage activity.

Wenzel M, Friedrich L, Göttfert M, Zehner S.

Mol Plant Microbe Interact. 2010 Jan;23(1):124-9. doi: 10.1094/MPMI-23-1-0124.

19.

Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii.

Okazaki S, Zehner S, Hempel J, Lang K, Göttfert M.

FEMS Microbiol Lett. 2009 Jun;295(1):88-95. doi: 10.1111/j.1574-6968.2009.01593.x.

20.

Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum.

Hempel J, Zehner S, Göttfert M, Patschkowski T.

J Biotechnol. 2009 Mar 10;140(1-2):51-8. doi: 10.1016/j.jbiotec.2008.11.002. Epub 2008 Nov 27.

PMID:
19095018
21.

Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated tts box promoter.

Zehner S, Schober G, Wenzel M, Lang K, Göttfert M.

Mol Plant Microbe Interact. 2008 Aug;21(8):1087-93. doi: 10.1094/MPMI-21-8-1087.

22.

The genistein stimulon of Bradyrhizobium japonicum.

Lang K, Lindemann A, Hauser F, Göttfert M.

Mol Genet Genomics. 2008 Mar;279(3):203-11. doi: 10.1007/s00438-007-0280-7. Epub 2008 Jan 24.

PMID:
18214545
23.

Identification and expression analyses of putative sesquiterpene synthase genes in Phormidium sp. and prevalence of geoA-like genes in a drinking water reservoir.

Ludwig F, Medger A, Börnick H, Opitz M, Lang K, Göttfert M, Röske I.

Appl Environ Microbiol. 2007 Nov;73(21):6988-93. Epub 2007 Sep 7.

24.

Characterization of two sets of subpolar flagella in Bradyrhizobium japonicum.

Kanbe M, Yagasaki J, Zehner S, Göttfert M, Aizawa S.

J Bacteriol. 2007 Feb;189(3):1083-9. Epub 2006 Nov 10.

25.

Identification of genistein-inducible and type III-secreted proteins of Bradyrhizobium japonicum.

Süss C, Hempel J, Zehner S, Krause A, Patschkowski T, Göttfert M.

J Biotechnol. 2006 Oct 20;126(1):69-77. Epub 2006 May 16.

PMID:
16707185
26.

What can bacterial genome research teach us about bacteria-plant interactions?

Pühler A, Arlat M, Becker A, Göttfert M, Morrissey JP, O'Gara F.

Curr Opin Plant Biol. 2004 Apr;7(2):137-47. Review.

PMID:
15003213
27.

New NodW- or NifA-regulated Bradyrhizobium japonicum genes.

Caldelari Baumberger I, Fraefel N, Göttfert M, Hennecke H.

Mol Plant Microbe Interact. 2003 Apr;16(4):342-51.

28.

Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum.

Krause A, Doerfel A, Göttfert M.

Mol Plant Microbe Interact. 2002 Dec;15(12):1228-35.

29.

The nir, nor, and nos denitrification genes are dispersed over the Bradyrhizobium japonicum chromosome.

Mesa S, Göttfert M, Bedmar EJ.

Arch Microbiol. 2001 Jul;176(1-2):136-42.

PMID:
11479713
30.

Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome.

Göttfert M, Röthlisberger S, Kündig C, Beck C, Marty R, Hennecke H.

J Bacteriol. 2001 Feb;183(4):1405-12.

31.

One of two hemN genes in Bradyrhizobium japonicum is functional during anaerobic growth and in symbiosis.

Fischer HM, Velasco L, Delgado MJ, Bedmar EJ, Schären S, Zingg D, Göttfert M, Hennecke H.

J Bacteriol. 2001 Feb;183(4):1300-11.

32.

Three new NifA-regulated genes in the Bradyrhizobium japonicum symbiotic gene region discovered by competitive DNA-RNA hybridization.

Nienaber A, Huber A, Göttfert M, Hennecke H, Fischer HM.

J Bacteriol. 2000 Mar;182(6):1472-80.

33.

A putative amino acid transporter is specifically expressed in haustoria of the rust fungus Uromyces fabae.

Hahn M, Neef U, Struck C, Göttfert M, Mendgen K.

Mol Plant Microbe Interact. 1997 May;10(4):438-45.

34.

Dissection of the transcription machinery for housekeeping genes of Bradyrhizobium japonicum.

Beck C, Marty R, Kläusli S, Hennecke H, Göttfert M.

J Bacteriol. 1997 Jan;179(2):364-9.

35.

A single rRNA gene region in Bradyrhizobium japonicum.

Kündig C, Beck C, Hennecke H, Göttfert M.

J Bacteriol. 1995 Sep;177(17):5151-4.

36.

A novel response-regulator is able to suppress the nodulation defect of a Bradyrhizobium japonicum nodW mutant.

Grob P, Michel P, Hennecke H, Göttfert M.

Mol Gen Genet. 1993 Dec;241(5-6):531-41.

PMID:
8264528
37.

Correlated physical and genetic map of the Bradyrhizobium japonicum 110 genome.

Kündig C, Hennecke H, Göttfert M.

J Bacteriol. 1993 Feb;175(3):613-22.

38.

Regulation and function of rhizobial nodulation genes.

Göttfert M.

FEMS Microbiol Rev. 1993 Jan;10(1-2):39-63. Review.

PMID:
8431309
39.

Structural and functional analysis of two different nodD genes in Bradyrhizobium japonicum USDA110.

Göttfert M, Holzhäuser D, Bäni D, Hennecke H.

Mol Plant Microbe Interact. 1992 May-Jun;5(3):257-65.

PMID:
1421512
40.

The Bradyrhizobium japonicum nolA gene and its involvement in the genotype-specific nodulation of soybeans.

Sadowsky MJ, Cregan PB, Gottfert M, Sharma A, Gerhold D, Rodriguez-Quinones F, Keyser HH, Hennecke H, Stacey G.

Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):637-41.

41.

Codon usage and G + C content in Bradyrhizobium japonicum genes are not uniform.

Ramseier TM, Göttfert M.

Arch Microbiol. 1991;156(4):270-6.

PMID:
1793334
42.

Identification of nodS and nodU, two inducible genes inserted between the Bradyrhizobium japonicum nodYABC and nodIJ genes.

Göttfert M, Hitz S, Hennecke H.

Mol Plant Microbe Interact. 1990 Sep-Oct;3(5):308-16.

PMID:
2134855
43.
44.

Mutational analysis of the Bradyrhizobium japonicum common nod genes and further nod box-linked genomic DNA regions.

Göttfert M, Lamb JW, Gasser R, Semenza J, Hennecke H.

Mol Gen Genet. 1989 Feb;215(3):407-15.

PMID:
2710106
45.

At least two nodD genes are necessary for efficient nodulation of alfalfa by Rhizobium meliloti.

Göttfert M, Horvath B, Kondorosi E, Putnoky P, Rodriguez-Quiñones F, Kondorosi A.

J Mol Biol. 1986 Oct 5;191(3):411-20.

PMID:
3820290

Supplemental Content

Loading ...
Support Center