Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 54

1.

Brown planthopper honeydew-associated symbiotic microbes elicit momilactones in rice.

Wari D, Alamgir KM, Mujiono K, Hojo Y, Tani A, Shinya T, Nakatani H, Galis I.

Plant Signal Behav. 2019 Aug 19:1-3. doi: 10.1080/15592324.2019.1655335. [Epub ahead of print]

PMID:
31422731
2.

Low Temperature Storage Stimulates Fruit Softening and Sugar Accumulation Without Ethylene and Aroma Volatile Production in Kiwifruit.

Mitalo OW, Tokiwa S, Kondo Y, Otsuki T, Galis I, Suezawa K, Kataoka I, Doan AT, Nakano R, Ushijima K, Kubo Y.

Front Plant Sci. 2019 Jul 5;10:888. doi: 10.3389/fpls.2019.00888. eCollection 2019.

3.

Tetranins: new putative spider mite elicitors of host plant defense.

Iida J, Desaki Y, Hata K, Uemura T, Yasuno A, Islam M, Maffei ME, Ozawa R, Nakajima T, Galis I, Arimura GI.

New Phytol. 2019 Mar 23. doi: 10.1111/nph.15813. [Epub ahead of print]

PMID:
30903698
4.

Honeydew-associated microbes elicit defense responses against brown planthopper in rice.

Wari D, Kabir MA, Mujiono K, Hojo Y, Shinya T, Tani A, Nakatani H, Galis I.

J Exp Bot. 2019 Mar 11;70(5):1683-1696. doi: 10.1093/jxb/erz041.

5.

Integration of danger peptide signals with herbivore-associated molecular pattern signaling amplifies anti-herbivore defense responses in rice.

Shinya T, Yasuda S, Hyodo K, Tani R, Hojo Y, Fujiwara Y, Hiruma K, Ishizaki T, Fujita Y, Saijo Y, Galis I.

Plant J. 2018 May;94(4):626-637. doi: 10.1111/tpj.13883. Epub 2018 Apr 1.

6.

Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding.

Tzin V, Hojo Y, Strickler SR, Bartsch LJ, Archer CM, Ahern KR, Zhou S, Christensen SA, Galis I, Mueller LA, Jander G.

J Exp Bot. 2017 Jul 20;68(16):4709-4723. doi: 10.1093/jxb/erx274.

7.

Phosphoinositide 3-kinase participates in l-methionine sulfoximine-induced cell death via salicylic acid mediated signaling in Nicotiana benthamiana.

Sumida S, Ito M, Galis I, Nakatani H, Shinya T, Ohnishi K, Hikichi Y, Kiba A.

J Plant Physiol. 2017 Nov;218:167-170. doi: 10.1016/j.jplph.2017.07.016. Epub 2017 Jul 28.

PMID:
28866325
8.

Oral Secretions Affect HIPVs Induced by Generalist (Mythimna loreyi) and Specialist (Parnara guttata) Herbivores in Rice.

Sobhy IS, Miyake A, Shinya T, Galis I.

J Chem Ecol. 2017 Sep;43(9):929-943. doi: 10.1007/s10886-017-0882-4. Epub 2017 Aug 31.

PMID:
28861807
9.

Molecular evidence for biochemical diversification of phenolamide biosynthesis in rice plants.

Tanabe K, Hojo Y, Shinya T, Galis I.

J Integr Plant Biol. 2016 Nov;58(11):903-913. doi: 10.1111/jipb.12480. Epub 2016 May 18.

PMID:
27015846
10.

Two Members of the Aluminum-Activated Malate Transporter Family, SlALMT4 and SlALMT5, are Expressed during Fruit Development, and the Overexpression of SlALMT5 Alters Organic Acid Contents in Seeds in Tomato (Solanum lycopersicum).

Sasaki T, Tsuchiya Y, Ariyoshi M, Nakano R, Ushijima K, Kubo Y, Mori IC, Higashiizumi E, Galis I, Yamamoto Y.

Plant Cell Physiol. 2016 Nov;57(11):2367-2379. Epub 2016 Sep 11.

PMID:
27615796
11.

Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice.

Shinya T, Hojo Y, Desaki Y, Christeller JT, Okada K, Shibuya N, Galis I.

Sci Rep. 2016 Sep 1;6:32537. doi: 10.1038/srep32537.

12.

Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory.

Alamgir KM, Hojo Y, Christeller JT, Fukumoto K, Isshiki R, Shinya T, Baldwin IT, Galis I.

Plant Cell Environ. 2016 Feb;39(2):453-66. doi: 10.1111/pce.12640. Epub 2015 Nov 14.

13.

Using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) to study carbon allocation in plants after herbivore attack.

Meldau S, Woldemariam MG, Fatangare A, Svatos A, Galis I.

BMC Res Notes. 2015 Feb 18;8:45. doi: 10.1186/s13104-015-0989-z.

14.

Overexpression of the PAP1 transcription factor reveals a complex regulation of flavonoid and phenylpropanoid metabolism in Nicotiana tabacum plants attacked by Spodoptera litura.

Mitsunami T, Nishihara M, Galis I, Alamgir KM, Hojo Y, Fujita K, Sasaki N, Nemoto K, Sawasaki T, Arimura G.

PLoS One. 2014 Sep 30;9(9):e108849. doi: 10.1371/journal.pone.0108849. eCollection 2014.

15.

α-linolenic acid concentration and not wounding per se is the key regulator of octadecanoid (oxylipin) pathway activity in rice (Oryza sativa L.) leaves.

Christeller JT, Galis I.

Plant Physiol Biochem. 2014 Oct;83:117-25. doi: 10.1016/j.plaphy.2014.07.013. Epub 2014 Aug 4.

PMID:
25129550
16.

SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana.

Kiba A, Galis I, Hojo Y, Ohnishi K, Yoshioka H, Hikichi Y.

PLoS One. 2014 May 20;9(5):e98150. doi: 10.1371/journal.pone.0098150. eCollection 2014.

17.

Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense.

Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S, Ozawa R, Uefune M, Sasaki R, Alamgir KM, Akitake S, Nobuke T, Galis I, Aoki K, Shibata D, Takabayashi J.

Proc Natl Acad Sci U S A. 2014 May 13;111(19):7144-9. doi: 10.1073/pnas.1320660111. Epub 2014 Apr 28.

18.

Jasmonoyl-l-isoleucine hydrolase 1 (JIH1) contributes to a termination of jasmonate signaling in N. attenuata.

Woldemariam MG, Gális I, Baldwin IT.

Plant Signal Behav. 2014 Apr 28;9. pii: e28973. [Epub ahead of print]

19.

Farinose flavonoids are associated with high freezing tolerance in fairy primrose (Primula malacoides) plants.

Isshiki R, Galis I, Tanakamaru S.

J Integr Plant Biol. 2014 Feb;56(2):181-8. doi: 10.1111/jipb.12145.

PMID:
24325406
20.

Multiple interactions of NaHER1 protein with abscisic acid signaling in Nicotiana attenuata plants.

Dinh ST, Baldwin IT, Gális I.

Plant Signal Behav. 2013 Nov;8(11):e26365. doi: 10.4161/psb.26365. Epub 2013 Sep 10.

21.

The HERBIVORE ELICITOR-REGULATED1 gene enhances abscisic acid levels and defenses against herbivores in Nicotiana attenuata plants.

Dinh ST, Baldwin IT, Galis I.

Plant Physiol. 2013 Aug;162(4):2106-24. doi: 10.1104/pp.113.221150. Epub 2013 Jun 19.

22.

Silencing an N-acyltransferase-like involved in lignin biosynthesis in Nicotiana attenuata dramatically alters herbivory-induced phenolamide metabolism.

Gaquerel E, Kotkar H, Onkokesung N, Galis I, Baldwin IT.

PLoS One. 2013 May 21;8(5):e62336. doi: 10.1371/journal.pone.0062336. Print 2013.

23.

NaMYC2 transcription factor regulates a subset of plant defense responses in Nicotiana attenuata.

Woldemariam MG, Dinh ST, Oh Y, Gaquerel E, Baldwin IT, Galis I.

BMC Plant Biol. 2013 May 1;13:73. doi: 10.1186/1471-2229-13-73.

24.

Response of rice to insect elicitors and the role of OsJAR1 in wound and herbivory-induced JA-Ile accumulation.

Fukumoto K, Alamgir K, Yamashita Y, Mori IC, Matsuura H, Galis I.

J Integr Plant Biol. 2013 Aug;55(8):775-84. doi: 10.1111/jipb.12057.

PMID:
23621526
25.

A jasmonate ZIM-domain protein NaJAZd regulates floral jasmonic acid levels and counteracts flower abscission in Nicotiana attenuata plants.

Oh Y, Baldwin IT, Galis I.

PLoS One. 2013;8(2):e57868. doi: 10.1371/journal.pone.0057868. Epub 2013 Feb 28.

26.

The use of VIGS technology to study plant-herbivore interactions.

Galis I, Schuman MC, Gase K, Hettenhausen C, Hartl M, Dinh ST, Wu J, Bonaventure G, Baldwin IT.

Methods Mol Biol. 2013;975:109-37. doi: 10.1007/978-1-62703-278-0_9.

PMID:
23386299
27.

Alternative oxidase in resistance to biotic stresses: Nicotiana attenuata AOX contributes to resistance to a pathogen and a piercing-sucking insect but not Manduca sexta larvae.

Zhang L, Oh Y, Li H, Baldwin IT, Galis I.

Plant Physiol. 2012 Nov;160(3):1453-67. doi: 10.1104/pp.112.200865. Epub 2012 Sep 7.

28.

UVB radiation and 17-hydroxygeranyllinalool diterpene glycosides provide durable resistance against mirid (Tupiocoris notatus) attack in field-grown Nicotiana attenuata plants.

Ðinh ST, Gális I, Baldwin IT.

Plant Cell Environ. 2013 Mar;36(3):590-606. doi: 10.1111/j.1365-3040.2012.02598.x. Epub 2012 Sep 18.

29.

Jasmonoyl-L-isoleucine hydrolase 1 (JIH1) regulates jasmonoyl-L-isoleucine levels and attenuates plant defenses against herbivores.

Woldemariam MG, Onkokesung N, Baldwin IT, Galis I.

Plant J. 2012 Dec;72(5):758-67. doi: 10.1111/j.1365-313X.2012.05117.x. Epub 2012 Oct 15.

30.

Environmental stresses of field growth allow cinnamyl alcohol dehydrogenase-deficient Nicotiana attenuata plants to compensate for their structural deficiencies.

Kaur H, Shaker K, Heinzel N, Ralph J, Gális I, Baldwin IT.

Plant Physiol. 2012 Aug;159(4):1545-70. doi: 10.1104/pp.112.196717. Epub 2012 May 29.

31.

NaJAZh regulates a subset of defense responses against herbivores and spontaneous leaf necrosis in Nicotiana attenuata plants.

Oh Y, Baldwin IT, Gális I.

Plant Physiol. 2012 Jun;159(2):769-88. doi: 10.1104/pp.112.193771. Epub 2012 Apr 9.

32.

MYB8 controls inducible phenolamide levels by activating three novel hydroxycinnamoyl-coenzyme A:polyamine transferases in Nicotiana attenuata.

Onkokesung N, Gaquerel E, Kotkar H, Kaur H, Baldwin IT, Galis I.

Plant Physiol. 2012 Jan;158(1):389-407. doi: 10.1104/pp.111.187229. Epub 2011 Nov 14.

33.

EOBII controls flower opening by functioning as a general transcriptomic switch.

Colquhoun TA, Schwieterman ML, Wedde AE, Schimmel BC, Marciniak DM, Verdonk JC, Kim JY, Oh Y, Gális I, Baldwin IT, Clark DG.

Plant Physiol. 2011 Jun;156(2):974-84. doi: 10.1104/pp.111.176248. Epub 2011 Apr 4.

34.

The role of jasmonic acid and ethylene crosstalk in direct defense of Nicotiana attenuata plants against chewing herbivores.

Onkokesung N, Baldwin IT, Gális I.

Plant Signal Behav. 2010 Oct;5(10):1305-7. Epub 2010 Oct 1.

35.

New insights into mechanisms regulating differential accumulation of phenylpropanoid-polyamine conjugates (PPCs) in herbivore-attacked Nicotiana attenuata plants.

Gális I, Onkokesung N, Baldwin IT.

Plant Signal Behav. 2010 May;5(5):610-3. doi: 10.4161/psb.11504. Epub 2010 May 1.

PMID:
20436280
36.

Jasmonic acid and ethylene modulate local responses to wounding and simulated herbivory in Nicotiana attenuata leaves.

Onkokesung N, Gális I, von Dahl CC, Matsuoka K, Saluz HP, Baldwin IT.

Plant Physiol. 2010 Jun;153(2):785-98. doi: 10.1104/pp.110.156232. Epub 2010 Apr 9.

37.

Enhanced fluorescence imaging in chlorophyll-suppressed tobacco tissues using virus-induced gene silencing of the phytoene desaturase gene.

Zhang L, Gase K, Baldwin I, Gális I.

Biotechniques. 2010 Feb;48(2):125-33. doi: 10.2144/000113345.

38.

R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata.

Kaur H, Heinzel N, Schöttner M, Baldwin IT, Gális I.

Plant Physiol. 2010 Mar;152(3):1731-47. doi: 10.1104/pp.109.151738. Epub 2010 Jan 20.

39.

An ecological analysis of the herbivory-elicited JA burst and its metabolism: plant memory processes and predictions of the moving target model.

Stork W, Diezel C, Halitschke R, Gális I, Baldwin IT.

PLoS One. 2009;4(3):e4697. doi: 10.1371/journal.pone.0004697. Epub 2009 Mar 11.

40.

Preferential up-regulation of G2/M phase-specific genes by overexpression of the hyperactive form of NtmybA2 lacking its negative regulation domain in tobacco BY-2 cells.

Kato K, Gális I, Suzuki S, Araki S, Demura T, Criqui MC, Potuschak T, Genschik P, Fukuda H, Matsuoka K, Ito M.

Plant Physiol. 2009 Apr;149(4):1945-57. doi: 10.1104/pp.109.135582. Epub 2009 Feb 25.

41.

Molecular mechanisms underlying plant memory in JA-mediated defence responses.

Gális I, Gaquerel E, Pandey SP, Baldwin IT.

Plant Cell Environ. 2009 Jun;32(6):617-27. doi: 10.1111/j.1365-3040.2008.01862.x. Epub 2008 Jul 24. Review.

42.

Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory.

Skibbe M, Qu N, Galis I, Baldwin IT.

Plant Cell. 2008 Jul;20(7):1984-2000. doi: 10.1105/tpc.108.058594. Epub 2008 Jul 18.

43.

The effect of bactibilia on the course and outcome of laparoscopic cholecystectomy.

Galili O, Eldar S Jr, Matter I, Madi H, Brodsky A, Galis I, Eldar S Sr.

Eur J Clin Microbiol Infect Dis. 2008 Sep;27(9):797-803. doi: 10.1007/s10096-008-0504-8. Epub 2008 Mar 28.

PMID:
18369670
44.

Comprehensive analysis of glucan elicitor-regulated gene expression in tobacco BY-2 cells reveals a novel MYB transcription factor involved in the regulation of phenylpropanoid metabolism.

Shinya T, Gális I, Narisawa T, Sasaki M, Fukuda H, Matsuoka H, Saito M, Matsuoka K.

Plant Cell Physiol. 2007 Oct;48(10):1404-13. Epub 2007 Aug 30.

PMID:
17761750
45.

Characterization of NtChitIV, a class IV chitinase induced by beta-1,3-, 1,6-glucan elicitor from Alternaria alternata 102: Antagonistic effect of salicylic acid and methyl jasmonate on the induction of NtChitIV.

Shinya T, Hanai K, Gális I, Suzuki K, Matsuoka K, Matsuoka H, Saito M.

Biochem Biophys Res Commun. 2007 Feb 9;353(2):311-7. Epub 2006 Dec 8.

PMID:
17178105
46.

A novel R2R3 MYB transcription factor NtMYBJS1 is a methyl jasmonate-dependent regulator of phenylpropanoid-conjugate biosynthesis in tobacco.

Gális I, Simek P, Narisawa T, Sasaki M, Horiguchi T, Fukuda H, Matsuoka K.

Plant J. 2006 May;46(4):573-92.

47.

Reduction of polar auxin transport in tobacco by the tumorigenic Agrobacterium tumefaciens AK-6b gene.

Kakiuchi Y, Gàlis I, Tamogami S, Wabiko H.

Planta. 2006 Jan;223(2):237-47. Epub 2005 Sep 17.

PMID:
16170561
48.

A comprehensive gene expression analysis toward the understanding of growth and differentiation of tobacco BY-2 cells.

Matsuoka K, Demura T, Galis I, Horiguchi T, Sasaki M, Tashiro G, Fukuda H.

Plant Cell Physiol. 2004 Sep;45(9):1280-9.

PMID:
15509851
50.

Agrobacterium tumefaciens AK-6b gene modulates phenolic compound metabolism in tobacco.

Gális I, Kakiuchi Y, Simek P, Wabiko H.

Phytochemistry. 2004 Jan;65(2):169-79.

PMID:
14732276

Supplemental Content

Support Center