Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 59

1.

Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications.

Rao R, Pint CL, Islam AE, Weatherup RS, Hofmann S, Meshot ER, Wu F, Zhou C, Dee N, Amama PB, Carpena-Nuñez J, Shi W, Plata DL, Penev ES, Yakobson BI, Balbuena PB, Bichara C, Futaba DN, Noda S, Shin H, Kim KS, Simard B, Mirri F, Pasquali M, Fornasiero F, Kauppinen EI, Arnold M, Cola BA, Nikolaev P, Arepalli S, Cheng HM, Zakharov DN, Stach EA, Zhang J, Wei F, Terrones M, Geohegan DB, Maruyama B, Maruyama S, Li Y, Adams WW, Hart AJ.

ACS Nano. 2018 Dec 26;12(12):11756-11784. doi: 10.1021/acsnano.8b06511. Epub 2018 Dec 5.

PMID:
30516055
2.

A New, General Strategy for Fabricating Highly Concentrated and Viscoplastic Suspensions Based on a Structural Approach To Modulate Interparticle Interaction.

Sakurai S, Kamada F, Kobashi K, Futaba DN, Hata K.

J Am Chem Soc. 2018 Jan 24;140(3):1098-1104. doi: 10.1021/jacs.7b11305. Epub 2018 Jan 8.

PMID:
29272113
3.

Designing Neat and Composite Carbon Nanotube Materials by Porosimetric Characterization.

Kobashi K, Yoon H, Ata S, Yamada T, Futaba DN, Hata K.

Nanoscale Res Lett. 2017 Dec 6;12(1):616. doi: 10.1186/s11671-017-2384-2.

4.

The double-edged effects of annealing MgO underlayers on the efficient synthesis of single-wall carbon nanotube forests.

Tsuji T, Hata K, Futaba DN, Sakurai S.

Nanoscale. 2017 Nov 16;9(44):17617-17622. doi: 10.1039/c7nr06478k.

PMID:
29115340
5.

Unexpected Efficient Synthesis of Millimeter-Scale Single-Wall Carbon Nanotube Forests Using a Sputtered MgO Catalyst Underlayer Enabled by a Simple Treatment Process.

Tsuji T, Hata K, Futaba DN, Sakurai S.

J Am Chem Soc. 2016 Dec 28;138(51):16608-16611. doi: 10.1021/jacs.6b11189. Epub 2016 Dec 19.

PMID:
27977184
6.

A phenomenological model for selective growth of semiconducting single-walled carbon nanotubes based on catalyst deactivation.

Sakurai S, Yamada M, Sakurai H, Sekiguchi A, Futaba DN, Hata K.

Nanoscale. 2016 Jan 14;8(2):1015-23. doi: 10.1039/c5nr05673j.

PMID:
26660858
7.

A sweet spot for highly efficient growth of vertically aligned single-walled carbon nanotube forests enabling their unique structures and properties.

Chen G, Davis RC, Futaba DN, Sakurai S, Kobashi K, Yumura M, Hata K.

Nanoscale. 2016 Jan 7;8(1):162-71. doi: 10.1039/c5nr05537g.

PMID:
26619935
8.

Nano-scale, planar and multi-tiered current pathways from a carbon nanotube-copper composite with high conductivity, ampacity and stability.

Subramaniam C, Sekiguchi A, Yamada T, Futaba DN, Hata K.

Nanoscale. 2016 Feb 21;8(7):3888-94. doi: 10.1039/c5nr03762j.

PMID:
26486752
9.

Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives.

Sekiguchi A, Tanaka F, Saito T, Kuwahara Y, Sakurai S, Futaba DN, Yamada T, Hata K.

Nano Lett. 2015 Sep 9;15(9):5716-23. doi: 10.1021/acs.nanolett.5b01458. Epub 2015 Aug 11.

PMID:
26218988
10.

The Application of Gas Dwell Time Control for Rapid Single Wall Carbon Nanotube Forest Synthesis to Acetylene Feedstock.

Matsumoto N, Oshima A, Sakurai S, Yamada T, Yumura M, Hata K, Futaba DN.

Nanomaterials (Basel). 2015 Jul 17;5(3):1200-1210. doi: 10.3390/nano5031200.

11.

Scalability of the Heat and Current Treatment on SWCNTs to Improve their Crystallinity and Thermal and Electrical Conductivities.

Matsumoto N, Oshima A, Sakurai S, Yumura M, Hata K, Futaba DN.

Nanoscale Res Lett. 2015 May 16;10:220. doi: 10.1186/s11671-015-0917-0. eCollection 2015.

12.

The relationship between the growth rate and the lifetime in carbon nanotube synthesis.

Chen G, Davis RC, Kimura H, Sakurai S, Yumura M, Futaba DN, Hata K.

Nanoscale. 2015 May 21;7(19):8873-8. doi: 10.1039/c5nr01125f.

PMID:
25913386
13.

Current treatment of bulk single walled carbon nanotubes to heal defects without structural change for increased electrical and thermal conductivities.

Matsumoto N, Oshima A, Yumura M, Futaba DN, Hata K.

Nanoscale. 2015 May 21;7(19):8707-14. doi: 10.1039/c5nr00170f.

PMID:
25913108
14.

Quantitative assessment of the effect of purity on the properties of single wall carbon nanotubes.

Matsumoto N, Chen G, Yumura M, Futaba DN, Hata K.

Nanoscale. 2015 Mar 12;7(12):5126-33. doi: 10.1039/c4nr07618d.

PMID:
25732951
15.

Breakdown of metallic single-wall carbon nanotube paths by NiO nanoparticle point etching for high performance thin film transistors.

Li S, Sakurai S, Futaba DN, Hata K.

Nanoscale. 2015 Jan 28;7(4):1280-4. doi: 10.1039/c4nr06057a.

PMID:
25492495
16.

Influence of matching solubility parameter of polymer matrix and CNT on electrical conductivity of CNT/rubber composite.

Ata S, Mizuno T, Nishizawa A, Subramaniam C, Futaba DN, Hata K.

Sci Rep. 2014 Dec 1;4:7232. doi: 10.1038/srep07232.

17.

Length-dependent plasmon resonance in single-walled carbon nanotubes.

Morimoto T, Joung SK, Saito T, Futaba DN, Hata K, Okazaki T.

ACS Nano. 2014 Oct 28;8(10):9897-904. doi: 10.1021/nn505430s. Epub 2014 Oct 10.

PMID:
25283493
18.

Preferential oxidation-induced etching of zigzag edges in nanographene.

Takashiro J, Kudo Y, Hao SJ, Takai K, Futaba DN, Enoki T, Kiguchi M.

Phys Chem Chem Phys. 2014 Oct 21;16(39):21363-71. doi: 10.1039/c4cp02678k. Epub 2014 Sep 2.

PMID:
25179299
19.

Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites.

Yoon H, Yamashita M, Ata S, Futaba DN, Yamada T, Hata K.

Sci Rep. 2014 Jan 28;4:3907. doi: 10.1038/srep03907.

20.

Diameter control of single-walled carbon nanotube forests from 1.3-3.0 nm by arc plasma deposition.

Chen G, Seki Y, Kimura H, Sakurai S, Yumura M, Hata K, Futaba DN.

Sci Rep. 2014 Jan 22;4:3804. doi: 10.1038/srep03804.

21.

Influence of lengths of millimeter-scale single-walled carbon nanotube on electrical and mechanical properties of buckypaper.

Sakurai S, Kamada F, Futaba DN, Yumura M, Hata K.

Nanoscale Res Lett. 2013 Dec 27;8(1):546. doi: 10.1186/1556-276X-8-546.

22.

The infinite possible growth ambients that support single-wall carbon nanotube forest growth.

Kimura H, Goto J, Yasuda S, Sakurai S, Yumura M, Futaba DN, Hata K.

Sci Rep. 2013 Nov 26;3:3334. doi: 10.1038/srep03334.

23.

Green, scalable, binderless fabrication of a single-walled carbon nanotube nonwoven fabric based on an ancient Japanese paper process.

Kobashi K, Hirabayashi T, Ata S, Yamada T, Futaba DN, Hata K.

ACS Appl Mater Interfaces. 2013 Dec 11;5(23):12602-8. doi: 10.1021/am403936n. Epub 2013 Nov 21.

PMID:
24221814
24.

Absence of an ideal single-walled carbon nanotube forest structure for thermal and electrical conductivities.

Chen G, Futaba DN, Kimura H, Sakurai S, Yumura M, Hata K.

ACS Nano. 2013 Nov 26;7(11):10218-24. doi: 10.1021/nn404504f. Epub 2013 Oct 7.

PMID:
24090543
25.

One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite.

Subramaniam C, Yamada T, Kobashi K, Sekiguchi A, Futaba DN, Yumura M, Hata K.

Nat Commun. 2013;4:2202. doi: 10.1038/ncomms3202.

26.

A Fundamental Limitation of Small Diameter Single-Walled Carbon Nanotube Synthesis-A Scaling Rule of the Carbon Nanotube Yield with Catalyst Volume.

Sakurai S, Inaguma M, Futaba DN, Yumura M, Hata K.

Materials (Basel). 2013 Jul 2;6(7):2633-2641. doi: 10.3390/ma6072633.

27.

Direct wall number control of carbon nanotube forests from engineered iron catalysts.

Chiang WH, Futaba DN, Yumura M, Hata K.

J Nanosci Nanotechnol. 2013 Apr;13(4):2745-51.

PMID:
23763154
28.

Diameter and density control of single-walled carbon nanotube forests by modulating Ostwald ripening through decoupling the catalyst formation and growth processes.

Sakurai S, Inaguma M, Futaba DN, Yumura M, Hata K.

Small. 2013 Nov 11;9(21):3584-92. doi: 10.1002/smll.201300223. Epub 2013 Apr 26.

PMID:
23625816
29.

Torsion-sensing material from aligned carbon nanotubes wound onto a rod demonstrating wide dynamic range.

Yamada T, Yamamoto Y, Hayamizu Y, Sekiguchi A, Tanaka H, Kobashi K, Futaba DN, Hata K.

ACS Nano. 2013 Apr 23;7(4):3177-82. doi: 10.1021/nn305593k. Epub 2013 Mar 14.

PMID:
23464614
30.

Unexpectedly high yield carbon nanotube synthesis from low-activity carbon feedstocks at high concentrations.

Kimura H, Goto J, Yasuda S, Sakurai S, Yumura M, Futaba DN, Hata K.

ACS Nano. 2013 Apr 23;7(4):3150-7. doi: 10.1021/nn305513e. Epub 2013 Mar 8.

PMID:
23458321
31.

Hierarchical three-dimensional layer-by-layer assembly of carbon nanotube wafers for integrated nanoelectronic devices.

Yamada T, Makiomoto N, Sekiguchi A, Yamamoto Y, Kobashi K, Hayamizu Y, Yomogida Y, Tanaka H, Shima H, Akinaga H, Futaba DN, Hata K.

Nano Lett. 2012 Sep 12;12(9):4540-5. doi: 10.1021/nl3016472. Epub 2012 Aug 17.

PMID:
22889469
32.

Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect.

Xu M, Futaba DN, Yumura M, Hata K.

ACS Nano. 2012 Jul 24;6(7):5837-44. doi: 10.1021/nn300142j. Epub 2012 Jun 22.

PMID:
22703583
33.

Mutual exclusivity in the synthesis of high crystallinity and high yield single-walled carbon nanotubes.

Kimura H, Futaba DN, Yumura M, Hata K.

J Am Chem Soc. 2012 Jun 6;134(22):9219-24. doi: 10.1021/ja300769j. Epub 2012 May 29.

PMID:
22591264
34.

Role of subsurface diffusion and Ostwald ripening in catalyst formation for single-walled carbon nanotube forest growth.

Sakurai S, Nishino H, Futaba DN, Yasuda S, Yamada T, Maigne A, Matsuo Y, Nakamura E, Yumura M, Hata K.

J Am Chem Soc. 2012 Feb 1;134(4):2148-53. doi: 10.1021/ja208706c. Epub 2012 Jan 17.

PMID:
22233092
35.

Gas dwell time control for rapid and long lifetime growth of single-walled carbon nanotube forests.

Yasuda S, Futaba DN, Yamada T, Yumura M, Hata K.

Nano Lett. 2011 Sep 14;11(9):3617-23. doi: 10.1021/nl201416c. Epub 2011 Aug 10.

PMID:
21823602
36.

Tailoring temperature invariant viscoelasticity of carbon nanotube material.

Xu M, Futaba DN, Yumura M, Hata K.

Nano Lett. 2011 Aug 10;11(8):3279-84. doi: 10.1021/nl201632m. Epub 2011 Jul 18.

PMID:
21755945
37.

Carbon nanotubes with temperature-invariant creep and creep-recovery from -190 to 970 °C.

Xu M, Futaba DN, Yumura M, Hata K.

Adv Mater. 2011 Aug 23;23(32):3686-91. doi: 10.1002/adma.201101412. Epub 2011 Jul 6. No abstract available.

PMID:
21732561
38.

A stretchable carbon nanotube strain sensor for human-motion detection.

Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K.

Nat Nanotechnol. 2011 May;6(5):296-301. doi: 10.1038/nnano.2011.36. Epub 2011 Mar 27.

PMID:
21441912
39.

Macroscopic wall number analysis of single-walled, double-walled, and few-walled carbon nanotubes by X-ray diffraction.

Futaba DN, Yamada T, Kobashi K, Yumura M, Hata K.

J Am Chem Soc. 2011 Apr 20;133(15):5716-9. doi: 10.1021/ja2005994. Epub 2011 Mar 28.

PMID:
21438641
40.

High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite.

Izadi-Najafabadi A, Yamada T, Futaba DN, Yudasaka M, Takagi H, Hatori H, Iijima S, Hata K.

ACS Nano. 2011 Feb 22;5(2):811-9. doi: 10.1021/nn1017457. Epub 2011 Jan 6.

PMID:
21210712
41.

Ion diffusion and electrochemical capacitance in aligned and packed single-walled carbon nanotubes.

Izadi-Najafabadi A, Futaba DN, Iijima S, Hata K.

J Am Chem Soc. 2010 Dec 29;132(51):18017-9. doi: 10.1021/ja108766y. Epub 2010 Dec 8.

PMID:
21141859
42.

Carbon nanotubes with temperature-invariant viscoelasticity from -196 degrees to 1000 degrees C.

Xu M, Futaba DN, Yamada T, Yumura M, Hata K.

Science. 2010 Dec 3;330(6009):1364-8. doi: 10.1126/science.1194865.

43.

General rules governing the highly efficient growth of carbon nanotubes.

Futaba DN, Goto J, Yasuda S, Yamada T, Yumura M, Hata K.

Adv Mater. 2009 Dec 18;21(47):4811-5. doi: 10.1002/adma.200901257. No abstract available.

PMID:
21049500
44.

Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density.

Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba DN, Hatori H, Yumura M, Iijima S, Hata K.

Adv Mater. 2010 Sep 15;22(35):E235-41. doi: 10.1002/adma.200904349. No abstract available.

PMID:
20564700
45.

Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction.

Yasuda S, Futaba DN, Yamada T, Satou J, Shibuya A, Takai H, Arakawa K, Yumura M, Hata K.

ACS Nano. 2009 Dec 22;3(12):4164-70. doi: 10.1021/nn9007302.

PMID:
19947579
46.

A background level of oxygen-containing aromatics for synthetic control of carbon nanotube structure.

Futaba DN, Goto J, Yasuda S, Yamada T, Yumura M, Hata K.

J Am Chem Soc. 2009 Nov 11;131(44):15992-3. doi: 10.1021/ja906983r.

PMID:
19842670
47.

Dual porosity single-walled carbon nanotube material.

Futaba DN, Miyake K, Murata K, Hayamizu Y, Yamada T, Sasaki S, Yumura M, Hata K.

Nano Lett. 2009 Sep;9(9):3302-7. doi: 10.1021/nl901581t.

PMID:
19673531
48.

Mechanical properties of beams from self-assembled closely packed and aligned single-walled carbon nanotubes.

Hayamizu Y, Davis RC, Yamada T, Futaba DN, Yasuda S, Yumura M, Hata K.

Phys Rev Lett. 2009 May 1;102(17):175505. Epub 2009 Apr 28.

PMID:
19518795
49.

Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts.

Yamada T, Maigne A, Yudasaka M, Mizuno K, Futaba DN, Yumura M, Lijima S, Hata K.

Nano Lett. 2008 Dec;8(12):4288-92. doi: 10.1021/nl801981m.

PMID:
19367845
50.

A black body absorber from vertically aligned single-walled carbon nanotubes.

Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN, Yumura M, Hata K.

Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6044-7. doi: 10.1073/pnas.0900155106. Epub 2009 Apr 1.

Supplemental Content

Loading ...
Support Center