Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 151

1.

Structural basis for broad substrate specificity of UDP-glucose 4-epimerase in the human milk oligosaccharide catabolic pathway of Bifidobacterium longum.

Nam YW, Nishimoto M, Arakawa T, Kitaoka M, Fushinobu S.

Sci Rep. 2019 Jul 31;9(1):11081. doi: 10.1038/s41598-019-47591-w.

2.

Identification, functional characterization, and crystal structure determination of bacterial levoglucosan dehydrogenase.

Sugiura M, Nakahara M, Yamada C, Arakawa T, Kitaoka M, Fushinobu S.

J Biol Chem. 2018 Nov 9;293(45):17375-17386. doi: 10.1074/jbc.RA118.004963. Epub 2018 Sep 17.

PMID:
30224354
3.

Structural features of a bacterial cyclic α-maltosyl-(1→6)-maltose (CMM) hydrolase critical for CMM recognition and hydrolysis.

Kohno M, Arakawa T, Ota H, Mori T, Nishimoto T, Fushinobu S.

J Biol Chem. 2018 Oct 26;293(43):16874-16888. doi: 10.1074/jbc.RA118.004472. Epub 2018 Sep 4.

PMID:
30181215
4.

Identification and characterization of a novel β-D-galactosidase that releases pyruvylated galactose.

Higuchi Y, Matsufuji H, Tanuma M, Arakawa T, Mori K, Yamada C, Shofia R, Matsunaga E, Tashiro K, Fushinobu S, Takegawa K.

Sci Rep. 2018 Aug 13;8(1):12013. doi: 10.1038/s41598-018-30508-4.

5.

Conformations of the type-1 lacto-N-biose I unit in protein complex structures.

Fushinobu S.

Acta Crystallogr F Struct Biol Commun. 2018 Aug 1;74(Pt 8):473-479. doi: 10.1107/S2053230X18006568. Epub 2018 Jul 26. Review.

PMID:
30084396
6.

Crystal structure of the central and the C-terminal RNase domains of colicin D implicated its translocation pathway through inner membrane of target cell.

Chang JW, Sato Y, Ogawa T, Arakawa T, Fukai S, Fushinobu S, Masaki H.

J Biochem. 2018 Nov 1;164(5):329-339. doi: 10.1093/jb/mvy056.

PMID:
29905832
7.

Structural and thermodynamic insights into β-1,2-glucooligosaccharide capture by a solute-binding protein in Listeria innocua.

Abe K, Sunagawa N, Terada T, Takahashi Y, Arakawa T, Igarashi K, Samejima M, Nakai H, Taguchi H, Nakajima M, Fushinobu S.

J Biol Chem. 2018 Jun 8;293(23):8812-8828. doi: 10.1074/jbc.RA117.001536. Epub 2018 Apr 20.

8.

Ligand complex structures of l-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 and its conformational change.

Im D, Matsui D, Arakawa T, Isobe K, Asano Y, Fushinobu S.

FEBS Open Bio. 2018 Feb 8;8(3):314-324. doi: 10.1002/2211-5463.12387. eCollection 2018 Mar.

9.

Discovery of α-l-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42.

Viborg AH, Katayama T, Arakawa T, Abou Hachem M, Lo Leggio L, Kitaoka M, Svensson B, Fushinobu S.

J Biol Chem. 2017 Dec 22;292(51):21092-21101. doi: 10.1074/jbc.M117.792598. Epub 2017 Oct 23.

10.

Crystal Structure and Substrate Specificity Modification of Acetyl Xylan Esterase from Aspergillus luchuensis.

Komiya D, Hori A, Ishida T, Igarashi K, Samejima M, Koseki T, Fushinobu S.

Appl Environ Microbiol. 2017 Sep 29;83(20). pii: e01251-17. doi: 10.1128/AEM.01251-17. Print 2017 Oct 15.

11.

The first crystal structure of a family 129 glycoside hydrolase from a probiotic bacterium reveals critical residues and metal cofactors.

Sato M, Liebschner D, Yamada Y, Matsugaki N, Arakawa T, Wills SS, Hattie M, Stubbs KA, Ito T, Senda T, Ashida H, Fushinobu S.

J Biol Chem. 2017 Jul 21;292(29):12126-12138. doi: 10.1074/jbc.M117.777391. Epub 2017 May 25.

12.

Molecular Insight into Evolution of Symbiosis between Breast-Fed Infants and a Member of the Human Gut Microbiome Bifidobacterium longum.

Yamada C, Gotoh A, Sakanaka M, Hattie M, Stubbs KA, Katayama-Ikegami A, Hirose J, Kurihara S, Arakawa T, Kitaoka M, Okuda S, Katayama T, Fushinobu S.

Cell Chem Biol. 2017 Apr 20;24(4):515-524.e5. doi: 10.1016/j.chembiol.2017.03.012. Epub 2017 Apr 6.

13.

Hydroxylation of Compactin (ML-236B) by CYP105D7 (SAV_7469) from Streptomyces avermitilis.

Yao Q, Ma L, Liu L, Ikeda H, Fushinobu S, Li S, Xu LH.

J Microbiol Biotechnol. 2017 May 28;27(5):956-964. doi: 10.4014/jmb.1610.10079.

14.

Biochemical and structural analyses of a bacterial endo-β-1,2-glucanase reveal a new glycoside hydrolase family.

Abe K, Nakajima M, Yamashita T, Matsunaga H, Kamisuki S, Nihira T, Takahashi Y, Sugimoto N, Miyanaga A, Nakai H, Arakawa T, Fushinobu S, Taguchi H.

J Biol Chem. 2017 May 5;292(18):7487-7506. doi: 10.1074/jbc.M116.762724. Epub 2017 Mar 7.

15.

Mechanistic insight into the substrate specificity of 1,2-β-oligoglucan phosphorylase from Lachnoclostridium phytofermentans.

Nakajima M, Tanaka N, Furukawa N, Nihira T, Kodutsumi Y, Takahashi Y, Sugimoto N, Miyanaga A, Fushinobu S, Taguchi H, Nakai H.

Sci Rep. 2017 Feb 15;7:42671. doi: 10.1038/srep42671.

16.

Isolation and characterization of a thermostable lipase from Bacillus thermoamylovorans NB501.

Yamada C, Sawano K, Iwase N, Matsuoka M, Arakawa T, Nishida S, Fushinobu S.

J Gen Appl Microbiol. 2017 Jan 25;62(6):313-319. doi: 10.2323/jgam.2016.06.002. Epub 2016 Nov 22.

17.

Crystal structures of archaeal 2-oxoacid:ferredoxin oxidoreductases from Sulfolobus tokodaii.

Yan Z, Maruyama A, Arakawa T, Fushinobu S, Wakagi T.

Sci Rep. 2016 Sep 13;6:33061. doi: 10.1038/srep33061.

18.

Crystal structure and identification of a key amino acid for glucose tolerance, substrate specificity, and transglycosylation activity of metagenomic β-glucosidase Td2F2.

Matsuzawa T, Jo T, Uchiyama T, Manninen JA, Arakawa T, Miyazaki K, Fushinobu S, Yaoi K.

FEBS J. 2016 Jun;283(12):2340-53. doi: 10.1111/febs.13743. Epub 2016 May 6.

19.

Archaeal Mo-Containing Glyceraldehyde Oxidoreductase Isozymes Exhibit Diverse Substrate Specificities through Unique Subunit Assemblies.

Wakagi T, Nishimasu H, Miyake M, Fushinobu S.

PLoS One. 2016 Jan 25;11(1):e0147333. doi: 10.1371/journal.pone.0147333. eCollection 2016.

20.

Characterization and crystal structure determination of β-1,2-mannobiose phosphorylase from Listeria innocua.

Tsuda T, Nihira T, Chiku K, Suzuki E, Arakawa T, Nishimoto M, Kitaoka M, Nakai H, Fushinobu S.

FEBS Lett. 2015 Dec 21;589(24 Pt B):3816-21. doi: 10.1016/j.febslet.2015.11.034. Epub 2015 Nov 26.

21.

The crystal structure of an inverting glycoside hydrolase family 9 exo-β-D-glucosaminidase and the design of glycosynthase.

Honda Y, Arai S, Suzuki K, Kitaoka M, Fushinobu S.

Biochem J. 2016 Feb 15;473(4):463-72. doi: 10.1042/BJ20150966. Epub 2015 Nov 30.

PMID:
26621872
22.

"Newton's cradle" proton relay with amide-imidic acid tautomerization in inverting cellulase visualized by neutron crystallography.

Nakamura A, Ishida T, Kusaka K, Yamada T, Fushinobu S, Tanaka I, Kaneko S, Ohta K, Tanaka H, Inaka K, Higuchi Y, Niimura N, Samejima M, Igarashi K.

Sci Adv. 2015 Aug 21;1(7):e1500263. doi: 10.1126/sciadv.1500263. eCollection 2015 Aug.

23.

An inverting β-1,2-mannosidase belonging to glycoside hydrolase family 130 from Dyadobacter fermentans.

Nihira T, Chiku K, Suzuki E, Nishimoto M, Fushinobu S, Kitaoka M, Ohtsubo K, Nakai H.

FEBS Lett. 2015 Nov 30;589(23):3604-10. doi: 10.1016/j.febslet.2015.10.008. Epub 2015 Oct 20.

24.

Gaining insight into the catalysis by GH20 lacto-N-biosidase using small molecule inhibitors and structural analysis.

Hattie M, Ito T, Debowski AW, Arakawa T, Katayama T, Yamamoto K, Fushinobu S, Stubbs KA.

Chem Commun (Camb). 2015 Oct 18;51(81):15008-11. doi: 10.1039/c5cc05494j.

25.

Identification of the Flavonoid Luteolin as a Repressor of the Transcription Factor Hepatocyte Nuclear Factor 4α.

Li J, Inoue J, Choi JM, Nakamura S, Yan Z, Fushinobu S, Kamada H, Kato H, Hashidume T, Shimizu M, Sato R.

J Biol Chem. 2015 Sep 25;290(39):24021-35. doi: 10.1074/jbc.M115.645200. Epub 2015 Aug 13.

26.

Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes.

Nam YW, Nihira T, Arakawa T, Saito Y, Kitaoka M, Nakai H, Fushinobu S.

J Biol Chem. 2015 Jul 24;290(30):18281-92. doi: 10.1074/jbc.M115.664664. Epub 2015 Jun 3.

27.

Open-close structural change upon ligand binding and two magnesium ions required for the catalysis of N-acetylhexosamine 1-kinase.

Sato M, Arakawa T, Nam YW, Nishimoto M, Kitaoka M, Fushinobu S.

Biochim Biophys Acta. 2015 May;1854(5):333-40. doi: 10.1016/j.bbapap.2015.01.011. Epub 2015 Jan 30.

PMID:
25644306
28.

Structural basis for the 4'-hydroxylation of diclofenac by a microbial cytochrome P450 monooxygenase.

Xu LH, Ikeda H, Liu L, Arakawa T, Wakagi T, Shoun H, Fushinobu S.

Appl Microbiol Biotechnol. 2015 Apr;99(7):3081-91. doi: 10.1007/s00253-014-6148-y. Epub 2014 Oct 24.

PMID:
25341403
29.

The core of allosteric motion in Thermus caldophilus L-lactate dehydrogenase.

Ikehara Y, Arai K, Furukawa N, Ohno T, Miyake T, Fushinobu S, Nakajima M, Miyanaga A, Taguchi H.

J Biol Chem. 2014 Nov 7;289(45):31550-64. doi: 10.1074/jbc.M114.599092. Epub 2014 Sep 25.

30.

Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad.

Suzuki K, Hori A, Kawamoto K, Thangudu RR, Ishida T, Igarashi K, Samejima M, Yamada C, Arakawa T, Wakagi T, Koseki T, Fushinobu S.

Proteins. 2014 Oct;82(10):2857-67. doi: 10.1002/prot.24649. Epub 2014 Aug 11.

PMID:
25066066
31.

Structural basis for reversible phosphorolysis and hydrolysis reactions of 2-O-α-glucosylglycerol phosphorylase.

Touhara KK, Nihira T, Kitaoka M, Nakai H, Fushinobu S.

J Biol Chem. 2014 Jun 27;289(26):18067-75. doi: 10.1074/jbc.M114.573212. Epub 2014 May 14.

32.

Mutational and crystallographic analysis of l-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813: Interconversion between oxidase and monooxygenase activities.

Matsui D, Im DH, Sugawara A, Fukuta Y, Fushinobu S, Isobe K, Asano Y.

FEBS Open Bio. 2014 Feb 7;4:220-8. doi: 10.1016/j.fob.2014.02.002. eCollection 2014.

33.

Crystal structure of glycoside hydrolase family 127 β-l-arabinofuranosidase from Bifidobacterium longum.

Ito T, Saikawa K, Kim S, Fujita K, Ishiwata A, Kaeothip S, Arakawa T, Wakagi T, Beckham GT, Ito Y, Fushinobu S.

Biochem Biophys Res Commun. 2014 Apr 25;447(1):32-7. doi: 10.1016/j.bbrc.2014.03.096. Epub 2014 Mar 27.

PMID:
24680821
34.

Structural and biochemical analyses of glycoside hydrolase family 26 β-mannanase from a symbiotic protist of the termite Reticulitermes speratus.

Tsukagoshi H, Nakamura A, Ishida T, Touhara KK, Otagiri M, Moriya S, Samejima M, Igarashi K, Fushinobu S, Kitamoto K, Arioka M.

J Biol Chem. 2014 Apr 11;289(15):10843-52. doi: 10.1074/jbc.M114.555383. Epub 2014 Feb 25.

35.

Four Cys residues in heterodimeric 2-oxoacid:ferredoxin oxidoreductase are required for CoA-dependent oxidative decarboxylation but not for a non-oxidative decarboxylation.

Yan Z, Fushinobu S, Wakagi T.

Biochim Biophys Acta. 2014 Apr;1844(4):736-43. doi: 10.1016/j.bbapap.2014.01.015. Epub 2014 Jan 31.

PMID:
24491525
36.

Engineering the allosteric properties of archaeal non-phosphorylating glyceraldehyde-3-phosphate dehydrogenases.

Ito F, Miyake M, Fushinobu S, Nakamura S, Shimizu K, Wakagi T.

Biochim Biophys Acta. 2014 Apr;1844(4):759-66. doi: 10.1016/j.bbapap.2014.01.017. Epub 2014 Jan 31.

PMID:
24491524
37.

Metalloproteins: A new face for biomass breakdown.

Fushinobu S.

Nat Chem Biol. 2014 Feb;10(2):88-9. doi: 10.1038/nchembio.1434. Epub 2013 Dec 22. No abstract available.

PMID:
24362704
38.

Sulfolobus tokodaii ST2133 is characterized as a thioredoxin reductase-like ferredoxin:NADP+ oxidoreductase.

Yan Z, Nam YW, Fushinobu S, Wakagi T.

Extremophiles. 2014 Jan;18(1):99-110. doi: 10.1007/s00792-013-0601-1. Epub 2013 Dec 1.

PMID:
24292509
39.

Structural and mutational analysis of substrate recognition in kojibiose phosphorylase.

Okada S, Yamamoto T, Watanabe H, Nishimoto T, Chaen H, Fukuda S, Wakagi T, Fushinobu S.

FEBS J. 2014 Feb;281(3):778-86. doi: 10.1111/febs.12622. Epub 2013 Dec 12.

40.

Preparation of p-nitrophenyl β-l-arabinofuranoside as a substrate of β-l-arabinofuranosidase.

Kaeothip S, Ishiwata A, Ito T, Fushinobu S, Fujita K, Ito Y.

Carbohydr Res. 2013 Dec 15;382:95-100. doi: 10.1016/j.carres.2013.10.005. Epub 2013 Oct 14.

PMID:
24239541
41.

Phase-diagram-guided method for growth of a large crystal of glycoside hydrolase family 45 inverting cellulase suitable for neutron structural analysis.

Nakamura A, Ishida T, Fushinobu S, Kusaka K, Tanaka I, Inaka K, Higuchi Y, Masaki M, Ohta K, Kaneko S, Niimura N, Igarashi K, Samajima M.

J Synchrotron Radiat. 2013 Nov;20(Pt 6):859-63. doi: 10.1107/S0909049513020943. Epub 2013 Sep 25.

42.

Multiple rewards from a treasure trove of novel glycoside hydrolase and polysaccharide lyase structures: new folds, mechanistic details, and evolutionary relationships.

Fushinobu S, Alves VD, Coutinho PM.

Curr Opin Struct Biol. 2013 Oct;23(5):652-9. doi: 10.1016/j.sbi.2013.06.001. Epub 2013 Jun 28. Review.

PMID:
23816329
43.

Effectiveness of heat treatment to protect introduced denitrifying bacteria from eukaryotic predatory microorganisms in a pilot-scale bioreactor.

Ikeda-Ohtsubo W, Miyahara M, Yamada T, Watanabe A, Fushinobu S, Wakagi T, Shoun H, Miyauchi K, Endo G.

J Biosci Bioeng. 2013 Dec;116(6):722-4. doi: 10.1016/j.jbiosc.2013.05.024. Epub 2013 Jun 28.

PMID:
23810658
44.
45.

Crystal structures of glycoside hydrolase family 3 β-glucosidase 1 from Aspergillus aculeatus.

Suzuki K, Sumitani J, Nam YW, Nishimaki T, Tani S, Wakagi T, Kawaguchi T, Fushinobu S.

Biochem J. 2013 Jun 1;452(2):211-21. doi: 10.1042/BJ20130054.

PMID:
23537284
46.

Crystal structures of a glycoside hydrolase family 20 lacto-N-biosidase from Bifidobacterium bifidum.

Ito T, Katayama T, Hattie M, Sakurama H, Wada J, Suzuki R, Ashida H, Wakagi T, Yamamoto K, Stubbs KA, Fushinobu S.

J Biol Chem. 2013 Apr 26;288(17):11795-806. doi: 10.1074/jbc.M112.420109. Epub 2013 Mar 11.

47.

Bioaugmentation of a wastewater bioreactor system with the nitrous oxide-reducing denitrifier Pseudomonas stutzeri strain TR2.

Ikeda-Ohtsubo W, Miyahara M, Kim SW, Yamada T, Matsuoka M, Watanabe A, Fushinobu S, Wakagi T, Shoun H, Miyauchi K, Endo G.

J Biosci Bioeng. 2013 Jan;115(1):37-42. doi: 10.1016/j.jbiosc.2012.08.015. Epub 2012 Sep 19.

PMID:
22999357
48.

Comparative analysis of two glyceraldehyde-3-phosphate dehydrogenases from a thermoacidophilic archaeon, Sulfolobus tokodaii.

Ito F, Chishiki H, Fushinobu S, Wakagi T.

FEBS Lett. 2012 Sep 21;586(19):3097-103. doi: 10.1016/j.febslet.2012.07.059. Epub 2012 Jul 27.

49.

Identification of the catalytic residues of sequence-specific and histidine-free ribonuclease colicin E5.

Inoue-Ito S, Yajima S, Fushinobu S, Nakamura S, Ogawa T, Hidaka M, Masaki H.

J Biochem. 2012 Oct;152(4):365-72. Epub 2012 Jul 18.

PMID:
22815490
50.

A novel enzymatic system against oxidative stress in the thermophilic hydrogen-oxidizing bacterium Hydrogenobacter thermophilus.

Sato Y, Kameya M, Fushinobu S, Wakagi T, Arai H, Ishii M, Igarashi Y.

PLoS One. 2012;7(4):e34825. doi: 10.1371/journal.pone.0034825. Epub 2012 Apr 2.

Supplemental Content

Loading ...
Support Center