Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 19

1.

Methanotrophic Bacterial Biomass as Potential Mineral Feed Ingredients for Animals.

Kuźniar A, Furtak K, Włodarczyk K, Stępniewska Z, Wolińska A.

Int J Environ Res Public Health. 2019 Jul 26;16(15). pii: E2674. doi: 10.3390/ijerph16152674.

2.

Extended survival of misfolded G85R SOD1-linked ALS mice by transgenic expression of chaperone Hsp110.

Nagy M, Fenton WA, Li D, Furtak K, Horwich AL.

Proc Natl Acad Sci U S A. 2016 May 10;113(19):5424-8. doi: 10.1073/pnas.1604885113. Epub 2016 Apr 25.

3.

Progressive aggregation despite chaperone associations of a mutant SOD1-YFP in transgenic mice that develop ALS.

Wang J, Farr GW, Zeiss CJ, Rodriguez-Gil DJ, Wilson JH, Furtak K, Rutkowski DT, Kaufman RJ, Ruse CI, Yates JR 3rd, Perrin S, Feany MB, Horwich AL.

Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1392-7. doi: 10.1073/pnas.0813045106. Epub 2009 Jan 26.

4.

An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans.

Wang J, Farr GW, Hall DH, Li F, Furtak K, Dreier L, Horwich AL.

PLoS Genet. 2009 Jan;5(1):e1000350. doi: 10.1371/journal.pgen.1000350. Epub 2009 Jan 23.

5.

A small molecule inhibitor selective for a variant ATP-binding site of the chaperonin GroEL.

Chapman E, Farr GW, Furtak K, Horwich AL.

Bioorg Med Chem Lett. 2009 Feb 1;19(3):811-3. doi: 10.1016/j.bmcl.2008.12.015. Epub 2008 Dec 7.

6.

Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL.

Chapman E, Farr GW, Usaite R, Furtak K, Fenton WA, Chaudhuri TK, Hondorp ER, Matthews RG, Wolf SG, Yates JR, Pypaert M, Horwich AL.

Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15800-5. Epub 2006 Oct 16.

7.

Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation.

Hinnerwisch J, Fenton WA, Furtak KJ, Farr GW, Horwich AL.

Cell. 2005 Jul 1;121(7):1029-41.

8.

A protein interaction map of Drosophila melanogaster.

Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, DaSilva A, Zhong J, Stanyon CA, Finley RL Jr, White KP, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets RA, McKenna MP, Chant J, Rothberg JM.

Science. 2003 Dec 5;302(5651):1727-36. Epub 2003 Nov 6.

9.

Multivalent binding of nonnative substrate proteins by the chaperonin GroEL.

Farr GW, Furtak K, Rowland MB, Ranson NA, Saibil HR, Kirchhausen T, Horwich AL.

Cell. 2000 Mar 3;100(5):561-73.

10.

GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings.

Rye HS, Roseman AM, Chen S, Furtak K, Fenton WA, Saibil HR, Horwich AL.

Cell. 1999 Apr 30;97(3):325-38.

11.

Residues in chaperonin GroEL required for polypeptide binding and release.

Fenton WA, Kashi Y, Furtak K, Horwich AL.

Nature. 1994 Oct 13;371(6498):614-9.

PMID:
7935796
12.

Folding in vivo of bacterial cytoplasmic proteins: role of GroEL.

Horwich AL, Low KB, Fenton WA, Hirshfield IN, Furtak K.

Cell. 1993 Sep 10;74(5):909-17.

PMID:
8104102
13.
14.

Mitochondrial import and processing of mutant human ornithine transcarbamylase precursors in cultured cells.

Isaya G, Fenton WA, Hendrick JP, Furtak K, Kalousek F, Rosenberg LE.

Mol Cell Biol. 1988 Dec;8(12):5150-8.

15.

The ornithine transcarbamylase leader peptide directs mitochondrial import through both its midportion structure and net positive charge.

Horwich AL, Kalousek F, Fenton WA, Furtak K, Pollock RA, Rosenberg LE.

J Cell Biol. 1987 Aug;105(2):669-77.

16.

Hybridization of restriction fragments derived from calf satellite I DNA.

Sobieszczuk P, Furtak K, Skowroński J, Płucienniczak A.

Acta Biochim Pol. 1980;27(3-4):303-8.

17.

Molecular cloning of the restriction fragments derived from double EcoRI/PstI digestion of the calf satellite I DNA and their restriction analysis.

Kłysik J, Furtak K, Szymczak G, Bartnik E, Skowroński J, Panusz H.

Z Naturforsch C Biosci. 1979 Dec;34(12):1151-5.

PMID:
232595
18.

Mapping of calf thymus satellite I DNA fragments obtained by digestion with endoR EcoRI and endoR AluI.

Kłysik J, Furtak K, Skowroński J, Płucienniczak A, Panusz H.

Bull Acad Pol Sci Biol. 1979;27(2):87-91. No abstract available.

PMID:
232422
19.

The 1360 bp long basic repeat unit of calf satellite I DNA contains GC rich nucleus of about 140 bp.

Skowroński J, Furtak K, Kłysik J, Panusz H, Płucienniczak A.

Nucleic Acids Res. 1978 Nov;5(11):4077-85.

Supplemental Content

Loading ...
Support Center