Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 71

1.

Protein-nucleic acid interactions of LINE-1 ORF1p.

Naufer MN, Furano AV, Williams MC.

Semin Cell Dev Biol. 2018 Mar 31. pii: S1084-9521(17)30451-2. doi: 10.1016/j.semcdb.2018.03.019. [Epub ahead of print] Review.

2.

The challenge of ORF1p phosphorylation: Effects on L1 activity and its host.

Furano AV, Cook PR.

Mob Genet Elements. 2015 Dec 4;6(1):e1119927. eCollection 2016 Jan-Feb.

3.

L1 retrotransposition requires rapid ORF1p oligomerization, a novel coiled coil-dependent property conserved despite extensive remodeling.

Naufer MN, Callahan KE, Cook PR, Perez-Gonzalez CE, Williams MC, Furano AV.

Nucleic Acids Res. 2016 Jan 8;44(1):281-93. doi: 10.1093/nar/gkv1342. Epub 2015 Dec 15.

4.

Breaking bad: The mutagenic effect of DNA repair.

Chen J, Furano AV.

DNA Repair (Amst). 2015 Aug;32:43-51. doi: 10.1016/j.dnarep.2015.04.012. Epub 2015 May 1. Review.

5.

Phosphorylation of ORF1p is required for L1 retrotransposition.

Cook PR, Jones CE, Furano AV.

Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4298-303. doi: 10.1073/pnas.1416869112. Epub 2015 Mar 23.

6.

Repair of naturally occurring mismatches can induce mutations in flanking DNA.

Chen J, Miller BF, Furano AV.

Elife. 2014 Apr 29;3:e02001. doi: 10.7554/eLife.02001.

7.

Polymerization and nucleic acid-binding properties of human L1 ORF1 protein.

Callahan KE, Hickman AB, Jones CE, Ghirlando R, Furano AV.

Nucleic Acids Res. 2012 Jan;40(2):813-27. doi: 10.1093/nar/gkr728. Epub 2011 Sep 21.

8.

The mutational spectrum of non-CpG DNA varies with CpG content.

Walser JC, Furano AV.

Genome Res. 2010 Jul;20(7):875-82. doi: 10.1101/gr.103283.109. Epub 2010 May 24.

9.

CpG dinucleotides and the mutation rate of non-CpG DNA.

Walser JC, Ponger L, Furano AV.

Genome Res. 2008 Sep;18(9):1403-14. doi: 10.1101/gr.076455.108. Epub 2008 Jun 11.

10.

Human population genetic structure and diversity inferred from polymorphic L1(LINE-1) and Alu insertions.

Witherspoon DJ, Marchani EE, Watkins WS, Ostler CT, Wooding SP, Anders BA, Fowlkes JD, Boissinot S, Furano AV, Ray DA, Rogers AR, Batzer MA, Jorde LB.

Hum Hered. 2006;62(1):30-46. Epub 2006 Sep 21.

PMID:
17003565
11.

Fitness cost of LINE-1 (L1) activity in humans.

Boissinot S, Davis J, Entezam A, Petrov D, Furano AV.

Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9590-4. Epub 2006 Jun 9.

12.

The recent evolution of human L1 retrotransposons.

Boissinot S, Furano AV.

Cytogenet Genome Res. 2005;110(1-4):402-6. Review.

PMID:
16093692
13.

The structures of mouse and human L1 elements reflect their insertion mechanism.

Martin SL, Li WL, Furano AV, Boissinot S.

Cytogenet Genome Res. 2005;110(1-4):223-8.

PMID:
16093676
14.

The insertional history of an active family of L1 retrotransposons in humans.

Boissinot S, Entezam A, Young L, Munson PJ, Furano AV.

Genome Res. 2004 Jul;14(7):1221-31. Epub 2004 Jun 14.

15.

Different rates of LINE-1 (L1) retrotransposon amplification and evolution in New World monkeys.

Boissinot S, Roos C, Furano AV.

J Mol Evol. 2004 Jan;58(1):122-30.

PMID:
14743320
16.

L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish.

Furano AV, Duvernell DD, Boissinot S.

Trends Genet. 2004 Jan;20(1):9-14. Review.

PMID:
14698614
17.

Fruit flies and humans respond differently to retrotransposons.

Eickbush TH, Furano AV.

Curr Opin Genet Dev. 2002 Dec;12(6):669-74. Review.

PMID:
12433580
18.

Adaptive evolution in LINE-1 retrotransposons.

Boissinot S, Furano AV.

Mol Biol Evol. 2001 Dec;18(12):2186-94.

PMID:
11719568
19.

Selection against deleterious LINE-1-containing loci in the human lineage.

Boissinot S, Entezam A, Furano AV.

Mol Biol Evol. 2001 Jun;18(6):926-35.

PMID:
11371580
20.

L1 (LINE-1) retrotransposon evolution and amplification in recent human history.

Boissinot S, Chevret P, Furano AV.

Mol Biol Evol. 2000 Jun;17(6):915-28.

PMID:
10833198
21.

The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons.

Furano AV.

Prog Nucleic Acid Res Mol Biol. 2000;64:255-94. Review.

PMID:
10697412
22.

Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons.

Verneau O, Catzeflis F, Furano AV.

Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11284-9.

23.
24.

Rapid evolution of a young L1 (LINE-1) clade in recently speciated Rattus taxa.

Cabot EL, Angeletti B, Usdin K, Furano AV.

J Mol Evol. 1997 Oct;45(4):412-23.

PMID:
9321420
25.

Recombination creates novel L1 (LINE-1) elements in Rattus norvegicus.

Hayward BE, Zavanelli M, Furano AV.

Genetics. 1997 Jun;146(2):641-54.

26.
27.

L1 (LINE-1) retrotransposable elements provide a "fossil" record of the phylogenetic history of murid rodents.

Usdin K, Chevret P, Catzeflis FM, Verona R, Furano AV.

Mol Biol Evol. 1995 Jan;12(1):73-82.

PMID:
7877498
28.

Amplification of the ancient murine Lx family of long interspersed repeated DNA occurred during the murine radiation.

Furano AV, Hayward BE, Chevret P, Catzeflis F, Usdin K.

J Mol Evol. 1994 Jan;38(1):18-27.

PMID:
8151711
29.
30.
31.
32.
33.

Demethylation and specific remethylation of the promoter-like region of the L family of mammalian transposable elements.

Nur I, Pascale E, Furano AV.

Cell Biophys. 1989 Aug-Oct;15(1-2):61-6. No abstract available.

PMID:
2476227
34.
35.
37.
38.

Brain "identifier sequence".

Furano AV.

Science. 1986 Nov 21;234(4779):1005-6. No abstract available.

PMID:
3775369
39.

Target sites for the transposition of rat long interspersed repeated DNA elements (LINEs) are not random.

Furano AV, Somerville CC, Tsichlis PN, D'Ambrosio E.

Nucleic Acids Res. 1986 May 12;14(9):3717-27.

40.

Structure of the highly repeated, long interspersed DNA family (LINE or L1Rn) of the rat.

D'Ambrosio E, Waitzkin SD, Witney FR, Salemme A, Furano AV.

Mol Cell Biol. 1986 Feb;6(2):411-24.

41.

Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.

Lakshmikumaran MS, D'Ambrosio E, Laimins LA, Lin DT, Furano AV.

Mol Cell Biol. 1985 Sep;5(9):2197-203.

42.
43.

Highly repeated DNA families in the rat.

Witney FR, Furano AV.

J Biol Chem. 1984 Aug 25;259(16):10481-92.

44.

The spread of sequence variants in Rattus satellite DNAs.

Epstein DA, Witney FR, Furano AV.

Nucleic Acids Res. 1984 Jan 25;12(2):973-88.

45.
46.

The independent evolution of two closely related satellite DNA elements in rats (Rattus).

Witney FR, Furano AV.

Nucleic Acids Res. 1983 Jan 25;11(2):291-304.

49.

Regulation of the synthesis of E. coli elongation factor Tu.

Young FS, Furano AV.

Cell. 1981 Jun;24(3):695-706.

PMID:
6166386
50.

Portions of the gene encoding elongation factor Tu are highly conserved in prokaryotes.

Filer D, Furano AV.

J Biol Chem. 1980 Jan 25;255(2):728-34. No abstract available.

Supplemental Content

Loading ...
Support Center