Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 54

1.

Structural basis for the oxidation of protein-bound sulfur by the sulfur cycle molybdohemo-enzyme sulfane dehydrogenase SoxCD.

Zander U, Faust A, Klink BU, de Sanctis D, Panjikar S, Quentmeier A, Bardischewsky F, Friedrich CG, Scheidig AJ.

J Biol Chem. 2011 Mar 11;286(10):8349-60. doi: 10.1074/jbc.M110.193631. Epub 2010 Dec 8.

2.

Spectroscopic characterization of the molybdenum cofactor of the sulfane dehydrogenase SoxCD from Paracoccus pantotrophus.

Drew SC, Reijerse E, Quentmeier A, Rother D, Friedrich CG, Lubitz W.

Inorg Chem. 2011 Jan 17;50(2):409-11. doi: 10.1021/ic102201f. Epub 2010 Dec 13.

PMID:
21142117
3.

A combined fluorescence spectroscopic and electrochemical approach for the study of thioredoxins.

Voicescu M, Rother D, Bardischewsky F, Friedrich CG, Hellwig P.

Biochemistry. 2011 Jan 11;50(1):17-24. Epub 2010 Dec 10.

PMID:
21110519
4.

Interaction between Sox proteins of two physiologically distinct bacteria and a new protein involved in thiosulfate oxidation.

Welte C, Hafner S, Krätzer C, Quentmeier A, Friedrich CG, Dahl C.

FEBS Lett. 2009 Apr 17;583(8):1281-6. doi: 10.1016/j.febslet.2009.03.020. Epub 2009 Mar 19.

5.

The structure of the periplasmic thiol-disulfide oxidoreductase SoxS from Paracoccus pantotrophus indicates a triple Trx/Grx/DsbC functionality in chemotrophic sulfur oxidation.

Carius Y, Rother D, Friedrich CG, Scheidig AJ.

Acta Crystallogr D Biol Crystallogr. 2009 Mar;65(Pt 3):229-40. doi: 10.1107/S0907444908043023. Epub 2009 Feb 20.

PMID:
19237745
6.

Identification of two inactive forms of the central sulfur cycle protein SoxYZ of Paracoccus pantotrophus.

Quentmeier A, Li L, Friedrich CG.

FEBS Lett. 2008 Oct 29;582(25-26):3701-4. doi: 10.1016/j.febslet.2008.09.043. Epub 2008 Oct 1.

7.

Sulfur oxidation of Paracoccus pantotrophus: the sulfur-binding protein SoxYZ is the target of the periplasmic thiol-disulfide oxidoreductase SoxS.

Rother D, Ringk J, Friedrich CG.

Microbiology. 2008 Jul;154(Pt 7):1980-8. doi: 10.1099/mic.0.2008/018655-0.

PMID:
18599826
8.

Activation of the heterodimeric central complex SoxYZ of chemotrophic sulfur oxidation is linked to a conformational change and SoxY-Y interprotein disulfide formation.

Quentmeier A, Janning P, Hellwig P, Friedrich CG.

Biochemistry. 2007 Sep 25;46(38):10990-8. Epub 2007 Aug 31.

PMID:
17760419
9.

The unusal redox centers of SoxXA, a novel c-type heme-enzyme essential for chemotrophic sulfur-oxidation of Paracoccus pantotrophus.

Reijerse EJ, Sommerhalter M, Hellwig P, Quentmeier A, Rother D, Laurich C, Bothe E, Lubitz W, Friedrich CG.

Biochemistry. 2007 Jul 3;46(26):7804-10. Epub 2007 Jun 5.

PMID:
17547421
10.

The periplasmic thioredoxin SoxS plays a key role in activation in vivo of chemotrophic sulfur oxidation of Paracoccus pantotrophus.

Orawski G, Bardischewsky F, Quentmeier A, Rother D, Friedrich CG.

Microbiology. 2007 Apr;153(Pt 4):1081-1086. doi: 10.1099/mic.0.2006/004143-0.

PMID:
17379716
11.

Characterization of a cyanobacterial-like uptake [NiFe] hydrogenase: EPR and FTIR spectroscopic studies of the enzyme from Acidithiobacillus ferrooxidans.

Schröder O, Bleijlevens B, de Jongh TE, Chen Z, Li T, Fischer J, Förster J, Friedrich CG, Bagley KA, Albracht SP, Lubitz W.

J Biol Inorg Chem. 2007 Feb;12(2):212-33. Epub 2006 Nov 3.

PMID:
17082918
12.

The flavoprotein SoxF functions in chemotrophic thiosulfate oxidation of Paracoccus pantotrophus in vivo and in vitro.

Bardischewsky F, Quentmeier A, Friedrich CG.

FEMS Microbiol Lett. 2006 May;258(1):121-6.

13.

SoxV transfers electrons to the periplasm of Paracoccus pantotrophus - an essential reaction for chemotrophic sulfur oxidation.

Bardischewsky F, Fischer J, Höller B, Friedrich CG.

Microbiology. 2006 Feb;152(Pt 2):465-72.

PMID:
16436434
14.

Prokaryotic sulfur oxidation.

Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J.

Curr Opin Microbiol. 2005 Jun;8(3):253-9. Review.

PMID:
15939347
15.

SoxRS-mediated regulation of chemotrophic sulfur oxidation in Paracoccus pantotrophus.

Rother D, Orawski G, Bardischewsky F, Friedrich CG.

Microbiology. 2005 May;151(Pt 5):1707-1716. doi: 10.1099/mic.0.27724-0.

PMID:
15870478
16.

Sulfur dehydrogenase of Paracoccus pantotrophus: the heme-2 domain of the molybdoprotein cytochrome c complex is dispensable for catalytic activity.

Bardischewsky F, Quentmeier A, Rother D, Hellwig P, Kostka S, Friedrich CG.

Biochemistry. 2005 May 10;44(18):7024-34.

PMID:
15865447
17.

Sulfide dehydrogenase activity of the monomeric flavoprotein SoxF of Paracoccus pantotrophus.

Quentmeier A, Hellwig P, Bardischewsky F, Wichmann R, Friedrich CG.

Biochemistry. 2004 Nov 23;43(46):14696-703.

PMID:
15544340
18.

Sulfur oxidation in Paracoccus pantotrophus: interaction of the sulfur-binding protein SoxYZ with the dimanganese SoxB protein.

Quentmeier A, Hellwig P, Bardischewsky F, Grelle G, Kraft R, Friedrich CG.

Biochem Biophys Res Commun. 2003 Dec 26;312(4):1011-8.

PMID:
14651972
19.

Inducible aluminum resistance of Acidiphilium cryptum and aluminum tolerance of other acidophilic bacteria.

Fischer J, Quentmeier A, Gansel S, Sabados V, Friedrich CG.

Arch Microbiol. 2002 Dec;178(6):554-8. Epub 2002 Sep 28.

PMID:
12420179
22.
23.
24.

Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?

Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J.

Appl Environ Microbiol. 2001 Jul;67(7):2873-82. Review. No abstract available.

25.

Evidence for two pathways of thiosulfate oxidation in Starkeya novella (formerly Thiobacillus novellus).

Kappler U, Friedrich CG, Trüper HG, Dahl C.

Arch Microbiol. 2001 Feb;175(2):102-11.

PMID:
11285738
26.
27.

Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17.

Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S, Prinz H.

J Bacteriol. 2000 Sep;182(17):4677-87.

28.

Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17.

Quentmeier A, Kraft R, Kostka S, Klockenkämper R, Friedrich CG.

Arch Microbiol. 2000 Feb;173(2):117-25.

PMID:
10795683
29.

Unusual FTIR and EPR properties of the H2-activating site of the cytoplasmic NAD-reducing hydrogenase from Ralstonia eutropha.

Happe RP, Roseboom W, Egert G, Friedrich CG, Massanz C, Friedrich B, Albracht SP.

FEBS Lett. 2000 Jan 28;466(2-3):259-63.

30.

Physiology and genetics of sulfur-oxidizing bacteria.

Friedrich CG.

Adv Microb Physiol. 1998;39:235-89. Review.

PMID:
9328649
32.

Purification and characterization of the hydrogenase from Thiobacillus ferrooxidans.

Fischer J, Quentmeier A, Kostka S, Kraft R, Friedrich CG.

Arch Microbiol. 1996 May;165(5):289-96.

PMID:
8661919
33.

Identification and sequence analysis of the soxB gene essential for sulfur oxidation of Paracoccus denitrificans GB17.

Wodara C, Kostka S, Egert M, Kelly DP, Friedrich CG.

J Bacteriol. 1994 Oct;176(20):6188-91.

34.

Transfer and expression of degradative and antibiotic resistance plasmids in acidophilic bacteria.

Quentmeier A, Friedrich CG.

Appl Environ Microbiol. 1994 Mar;60(3):973-8.

35.

Transfer of Thiosphaera pantotropha to Paracoccus denitrificans.

Ludwig W, Mittenhuber G, Friedrich CG.

Int J Syst Bacteriol. 1993 Apr;43(2):363-7.

PMID:
8494744
36.

Identification of the DNA region responsible for sulfur-oxidizing ability of Thiosphaera pantotropha.

Mittenhuber G, Sonomoto K, Egert M, Friedrich CG.

J Bacteriol. 1991 Nov;173(22):7340-4.

37.

Differential stability of mRNA species of Alcaligenes eutrophus soluble and particulate hydrogenases.

Oelmüller U, Schlegel HG, Friedrich CG.

J Bacteriol. 1990 Dec;172(12):7057-64.

38.
39.
40.

Expression of hydrogenase in Alcaligenes spp. is altered by interspecific plasmid exchange.

Friedrich B, Friedrich CG, Meyer M, Schlegel HG.

J Bacteriol. 1984 Apr;158(1):331-3.

42.
43.

Nickel in the catalytically active hydrogenase of Alcaligenes eutrophus.

Friedrich CG, Schneider K, Friedrich B.

J Bacteriol. 1982 Oct;152(1):42-8.

45.

Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus.

Friedrich B, Heine E, Finck A, Friedrich CG.

J Bacteriol. 1981 Mar;145(3):1144-9.

46.

Alanine dehydrogenase of the beta-lactam antibiotic producer Streptomyces clavuligerus.

Aharonowitz Y, Friedrich CG.

Arch Microbiol. 1980 Mar;125(1-2):137-42.

PMID:
7387330
47.

Uptake and metabolism of alpha-aminoadipic acid by Penicillium chrysogenum Wis 54-1255.

Friedrich CG, Demain AL.

Arch Microbiol. 1978 Oct 4;119(1):43-7.

PMID:
31148
49.

Effects of lysine analogs on Penicillium chrysogenum.

Friedrich CG, Demain AL.

Appl Environ Microbiol. 1977 Dec;34(6):706-9.

50.

Homocitrate synthase as the crucial site of the lysine effect on penicillin biosynthesis.

Friedrich CG, Demain AL.

J Antibiot (Tokyo). 1977 Sep;30(9):760-1.

Supplemental Content

Loading ...
Support Center