Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 44

1.

Distinct roles for S. cerevisiae H2A copies in recombination and repeat stability, with a role for H2A.1 threonine 126.

House NC, Polleys EJ, Quasem I, De la Rosa Mejia M, Joyce CE, Takacsi-Nagy O, Krebs JE, Fuchs SM, Freudenreich CH.

Elife. 2019 Dec 5;8. pii: e53362. doi: 10.7554/eLife.53362.

2.

Genetic Assays to Study Repeat Fragility in Saccharomyces cerevisiae.

Polleys EJ, Freudenreich CH.

Methods Mol Biol. 2020;2056:83-101. doi: 10.1007/978-1-4939-9784-8_5.

PMID:
31586342
3.

Sequence and Nuclease Requirements for Breakage and Healing of a Structure-Forming (AT)n Sequence within Fragile Site FRA16D.

Kaushal S, Wollmuth CE, Das K, Hile SE, Regan SB, Barnes RP, Haouzi A, Lee SM, House NCM, Guyumdzhyan M, Eckert KA, Freudenreich CH.

Cell Rep. 2019 Apr 23;27(4):1151-1164.e5. doi: 10.1016/j.celrep.2019.03.103.

4.

Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways.

Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SA, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A.

Microb Cell. 2019 Jan 7;6(1):1-64. doi: 10.15698/mic2019.01.664. Review.

5.

The role of fork stalling and DNA structures in causing chromosome fragility.

Kaushal S, Freudenreich CH.

Genes Chromosomes Cancer. 2019 May;58(5):270-283. doi: 10.1002/gcc.22721. Epub 2019 Jan 29. Review.

PMID:
30536896
6.

Mrc1 and Tof1 prevent fragility and instability at long CAG repeats by their fork stabilizing function.

Gellon L, Kaushal S, Cebrián J, Lahiri M, Mirkin SM, Freudenreich CH.

Nucleic Acids Res. 2019 Jan 25;47(2):794-805. doi: 10.1093/nar/gky1195.

7.

Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes.

Zhao J, Wang G, Del Mundo IM, McKinney JA, Lu X, Bacolla A, Boulware SB, Zhang C, Zhang H, Ren P, Freudenreich CH, Vasquez KM.

Cell Rep. 2018 Jan 30;22(5):1200-1210. doi: 10.1016/j.celrep.2018.01.014.

8.

R-loops: targets for nuclease cleavage and repeat instability.

Freudenreich CH.

Curr Genet. 2018 Aug;64(4):789-794. doi: 10.1007/s00294-018-0806-z. Epub 2018 Jan 11. Review.

9.

The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in Saccharomyces cerevisiae.

Koch MR, House NCM, Cosetta CM, Jong RM, Salomon CG, Joyce CE, Philips EA, Su XA, Freudenreich CH.

Genetics. 2018 Mar;208(3):963-976. doi: 10.1534/genetics.117.300529. Epub 2018 Jan 5.

10.

Methods to Study Repeat Fragility and Instability in Saccharomyces cerevisiae.

Polleys EJ, Freudenreich CH.

Methods Mol Biol. 2018;1672:403-419. doi: 10.1007/978-1-4939-7306-4_28.

PMID:
29043639
11.

Cytosine deamination and base excision repair cause R-loop-induced CAG repeat fragility and instability in Saccharomyces cerevisiae.

Su XA, Freudenreich CH.

Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8392-E8401. doi: 10.1073/pnas.1711283114. Epub 2017 Sep 18.

12.

Role of recombination and replication fork restart in repeat instability.

Polleys EJ, House NCM, Freudenreich CH.

DNA Repair (Amst). 2017 Aug;56:156-165. doi: 10.1016/j.dnarep.2017.06.018. Epub 2017 Jun 9. Review.

13.

Differential requirement of Srs2 helicase and Rad51 displacement activities in replication of hairpin-forming CAG/CTG repeats.

Nguyen JHG, Viterbo D, Anand RP, Verra L, Sloan L, Richard GF, Freudenreich CH.

Nucleic Acids Res. 2017 May 5;45(8):4519-4531. doi: 10.1093/nar/gkx088.

14.

Relocalization of DNA lesions to the nuclear pore complex.

Freudenreich CH, Su XA.

FEMS Yeast Res. 2016 Dec 1;16(8). doi: 10.1093/femsyr/fow095. Review.

15.

RTEL1 Inhibits Trinucleotide Repeat Expansions and Fragility.

Frizzell A, Nguyen JH, Petalcorin MI, Turner KD, Boulton SJ, Freudenreich CH, Lahue RS.

Cell Rep. 2016 Aug 16;16(7):2047. doi: 10.1016/j.celrep.2016.07.072. No abstract available.

16.

Regulation of recombination at yeast nuclear pores controls repair and triplet repeat stability.

Su XA, Dion V, Gasser SM, Freudenreich CH.

Genes Dev. 2015 May 15;29(10):1006-17. doi: 10.1101/gad.256404.114. Epub 2015 May 4.

17.

Repeat instability during DNA repair: Insights from model systems.

Usdin K, House NC, Freudenreich CH.

Crit Rev Biochem Mol Biol. 2015 Mar-Apr;50(2):142-67. doi: 10.3109/10409238.2014.999192. Epub 2015 Jan 22. Review.

18.

Chromatin modifications and DNA repair: beyond double-strand breaks.

House NC, Koch MR, Freudenreich CH.

Front Genet. 2014 Sep 5;5:296. doi: 10.3389/fgene.2014.00296. eCollection 2014. Review.

19.

NuA4 initiates dynamic histone H4 acetylation to promote high-fidelity sister chromatid recombination at postreplication gaps.

House NCM, Yang JH, Walsh SC, Moy JM, Freudenreich CH.

Mol Cell. 2014 Sep 18;55(6):818-828. doi: 10.1016/j.molcel.2014.07.007. Epub 2014 Aug 14.

20.

RTEL1 inhibits trinucleotide repeat expansions and fragility.

Frizzell A, Nguyen JH, Petalcorin MI, Turner KD, Boulton SJ, Freudenreich CH, Lahue RS.

Cell Rep. 2014 Mar 13;6(5):827-35. doi: 10.1016/j.celrep.2014.01.034. Epub 2014 Feb 20.

21.

Overcoming natural replication barriers: differential helicase requirements.

Anand RP, Shah KA, Niu H, Sung P, Mirkin SM, Freudenreich CH.

Nucleic Acids Res. 2012 Feb;40(3):1091-105. doi: 10.1093/nar/gkr836. Epub 2011 Oct 7.

22.

Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae.

Sundararajan R, Freudenreich CH.

PLoS Genet. 2011 Mar;7(3):e1001339. doi: 10.1371/journal.pgen.1001339. Epub 2011 Mar 17.

23.

New functions of Ctf18-RFC in preserving genome stability outside its role in sister chromatid cohesion.

Gellon L, Razidlo DF, Gleeson O, Verra L, Schulz D, Lahue RS, Freudenreich CH.

PLoS Genet. 2011 Feb 10;7(2):e1001298. doi: 10.1371/journal.pgen.1001298.

24.

Expansions, contractions, and fragility of the spinocerebellar ataxia type 10 pentanucleotide repeat in yeast.

Cherng N, Shishkin AA, Schlager LI, Tuck RH, Sloan L, Matera R, Sarkar PS, Ashizawa T, Freudenreich CH, Mirkin SM.

Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2843-8. doi: 10.1073/pnas.1009409108. Epub 2011 Jan 31.

25.

The Rtt109 histone acetyltransferase facilitates error-free replication to prevent CAG/CTG repeat contractions.

Yang JH, Freudenreich CH.

DNA Repair (Amst). 2010 Apr 4;9(4):414-20. doi: 10.1016/j.dnarep.2009.12.022. Epub 2010 Jan 18.

26.

Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae.

Sundararajan R, Gellon L, Zunder RM, Freudenreich CH.

Genetics. 2010 Jan;184(1):65-77. doi: 10.1534/genetics.109.111039. Epub 2009 Nov 9. Erratum in: Genetics. 2011 Apr;187(4):1245.

27.

Checkpoint responses to unusual structures formed by DNA repeats.

Voineagu I, Freudenreich CH, Mirkin SM.

Mol Carcinog. 2009 Apr;48(4):309-18. doi: 10.1002/mc.20512. Review.

28.

SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination.

Kerrest A, Anand RP, Sundararajan R, Bermejo R, Liberi G, Dujon B, Freudenreich CH, Richard GF.

Nat Struct Mol Biol. 2009 Feb;16(2):159-67. doi: 10.1038/nsmb.1544. Epub 2009 Jan 11.

30.

Chromosome fragility: molecular mechanisms and cellular consequences.

Freudenreich CH.

Front Biosci. 2007 Sep 1;12:4911-24. Review.

PMID:
17569619
31.
33.

Expanded CAG repeats activate the DNA damage checkpoint pathway.

Lahiri M, Gustafson TL, Majors ER, Freudenreich CH.

Mol Cell. 2004 Jul 23;15(2):287-93.

34.

Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability.

Liu Y, Zhang H, Veeraraghavan J, Bambara RA, Freudenreich CH.

Mol Cell Biol. 2004 May;24(9):4049-64.

35.

Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility.

Callahan JL, Andrews KJ, Zakian VA, Freudenreich CH.

Mol Cell Biol. 2003 Nov;23(21):7849-60.

36.

Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair.

Lenzmeier BA, Freudenreich CH.

Cytogenet Genome Res. 2003;100(1-4):7-24. Review.

PMID:
14526162
37.

Analysis of cleavage complexes using reactive inhibitor derivatives.

Kreuzer KN, Freudenreich CH, Pommier Y.

Methods Mol Biol. 2001;95:89-99. No abstract available.

PMID:
11089223
38.

CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae.

Balakumaran BS, Freudenreich CH, Zakian VA.

Hum Mol Genet. 2000 Jan 1;9(1):93-100.

PMID:
10587583
40.

Expansion and length-dependent fragility of CTG repeats in yeast.

Freudenreich CH, Kantrow SM, Zakian VA.

Science. 1998 Feb 6;279(5352):853-6.

41.

Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome.

Freudenreich CH, Stavenhagen JB, Zakian VA.

Mol Cell Biol. 1997 Apr;17(4):2090-8.

42.

Localization of an aminoacridine antitumor agent in a type II topoisomerase-DNA complex.

Freudenreich CH, Kreuzer KN.

Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11007-11.

43.

Differentially labeled mutant oligonucleotides for analysis of protein-DNA interactions.

Freudenreich CH, Kreuzer KN.

Biotechniques. 1994 Jan;16(1):104-8.

PMID:
8136122
44.

Supplemental Content

Loading ...
Support Center