Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 15

1.

High-resolution dose-response screening using droplet-based microfluidics.

Miller OJ, El Harrak A, Mangeat T, Baret JC, Frenz L, El Debs B, Mayot E, Samuels ML, Rooney EK, Dieu P, Galvan M, Link DR, Griffiths AD.

Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):378-83. doi: 10.1073/pnas.1113324109. Epub 2011 Dec 27.

2.

Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity.

Baret JC, Miller OJ, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels ML, Hutchison JB, Agresti JJ, Link DR, Weitz DA, Griffiths AD.

Lab Chip. 2009 Jul 7;9(13):1850-8. doi: 10.1039/b902504a. Epub 2009 Apr 23.

PMID:
19532959
3.

Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis.

Mazutis L, Araghi AF, Miller OJ, Baret JC, Frenz L, Janoshazi A, Taly V, Miller BJ, Hutchison JB, Link D, Griffiths AD, Ryckelynck M.

Anal Chem. 2009 Jun 15;81(12):4813-21. doi: 10.1021/ac900403z.

PMID:
19518143
4.

Reliable microfluidic on-chip incubation of droplets in delay-lines.

Frenz L, Blank K, Brouzes E, Griffiths AD.

Lab Chip. 2009 May 21;9(10):1344-8. doi: 10.1039/b816049j. Epub 2008 Dec 19.

5.

Microfluidic production of droplet pairs.

Frenz L, Blouwolff J, Griffiths AD, Baret JC.

Langmuir. 2008 Oct 21;24(20):12073-6. doi: 10.1021/la801954w. Epub 2008 Sep 27.

PMID:
18823095
6.

Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles.

Frenz L, El Harrak A, Pauly M, Bégin-Colin S, Griffiths AD, Baret JC.

Angew Chem Int Ed Engl. 2008;47(36):6817-20. doi: 10.1002/anie.200801360. No abstract available.

PMID:
18646028
7.

Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms.

Clausell-Tormos J, Lieber D, Baret JC, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Köster S, Duan H, Holtze C, Weitz DA, Griffiths AD, Merten CA.

Chem Biol. 2008 May;15(5):427-37. doi: 10.1016/j.chembiol.2008.04.004. Erratum in: Chem Biol. 2008 Aug 25;15(8):875.

8.

Genome-wide survey of protein kinases required for cell cycle progression.

Bettencourt-Dias M, Giet R, Sinka R, Mazumdar A, Lock WG, Balloux F, Zafiropoulos PJ, Yamaguchi S, Winter S, Carthew RW, Cooper M, Jones D, Frenz L, Glover DM.

Nature. 2004 Dec 23;432(7020):980-7.

9.

giant nuclei is essential in the cell cycle transition from meiosis to mitosis.

Renault AD, Zhang XH, Alphey LS, Frenz LM, Glover DM, Saunders RD, Axton JM.

Development. 2003 Jul;130(13):2997-3005.

11.

Rme1, which controls CLN2 expression in Saccharomyces cerevisiae, is a nuclear protein that is cell cycle regulated.

Frenz LM, Johnson AL, Johnston LH.

Mol Genet Genomics. 2001 Nov;266(3):374-84.

PMID:
11713667
12.

The Bub2-dependent mitotic pathway in yeast acts every cell cycle and regulates cytokinesis.

Lee SE, Jensen S, Frenz LM, Johnson AL, Fesquet D, Johnston LH.

J Cell Sci. 2001 Jun;114(Pt 12):2345-54.

13.

Order of function of the budding-yeast mitotic exit-network proteins Tem1, Cdc15, Mob1, Dbf2, and Cdc5.

Lee SE, Frenz LM, Wells NJ, Johnson AL, Johnston LH.

Curr Biol. 2001 May 15;11(10):784-8.

14.

The budding yeast Dbf2 protein kinase localises to the centrosome and moves to the bud neck in late mitosis.

Frenz LM, Lee SE, Fesquet D, Johnston LH.

J Cell Sci. 2000 Oct;113 Pt 19:3399-408.

15.

Supplemental Content

Support Center