Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 24

1.

Distinct Autocatalytic α- N-Methylating Precursors Expand the Borosin RiPP Family of Peptide Natural Products.

Quijano MR, Zach C, Miller FS, Lee AR, Imani AS, Künzler M, Freeman MF.

J Am Chem Soc. 2019 Jun 19;141(24):9637-9644. doi: 10.1021/jacs.9b03690. Epub 2019 Jun 5.

PMID:
31117659
2.

Investigations into PoyH, a promiscuous protease from polytheonamide biosynthesis.

Helf MJ, Freeman MF, Piel J.

J Ind Microbiol Biotechnol. 2019 Mar;46(3-4):551-563. doi: 10.1007/s10295-018-02129-3. Epub 2019 Jan 9.

PMID:
30627933
3.

A molecular mechanism for the enzymatic methylation of nitrogen atoms within peptide bonds.

Song H, van der Velden NS, Shiran SL, Bleiziffer P, Zach C, Sieber R, Imani AS, Krausbeck F, Aebi M, Freeman MF, Riniker S, Künzler M, Naismith JH.

Sci Adv. 2018 Aug 24;4(8):eaat2720. doi: 10.1126/sciadv.aat2720. eCollection 2018 Aug.

4.

RiPPing apart the rules for peptide natural products.

Imani AS, Freeman MF.

Synth Syst Biotechnol. 2018 Apr 5;3(2):81-82. doi: 10.1016/j.synbio.2018.03.002. eCollection 2018 Jun. No abstract available.

5.

Cobalamin-Dependent C-Methyltransferases From Marine Microbes: Accessibility via Rhizobia Expression.

Freeman MF.

Methods Enzymol. 2018;604:259-286. doi: 10.1016/bs.mie.2018.02.013. Epub 2018 Apr 6.

PMID:
29779655
6.

Autocatalytic backbone N-methylation in a family of ribosomal peptide natural products.

van der Velden NS, Kälin N, Helf MJ, Piel J, Freeman MF, Künzler M.

Nat Chem Biol. 2017 Aug;13(8):833-835. doi: 10.1038/nchembio.2393. Epub 2017 Jun 5.

PMID:
28581484
7.

Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium.

Freeman MF, Helf MJ, Bhushan A, Morinaka BI, Piel J.

Nat Chem. 2017 Apr;9(4):387-395. doi: 10.1038/nchem.2666. Epub 2016 Nov 28.

PMID:
28338684
8.

An Orthogonal D2 O-Based Induction System that Provides Insights into d-Amino Acid Pattern Formation by Radical S-Adenosylmethionine Peptide Epimerases.

Morinaka BI, Verest M, Freeman MF, Gugger M, Piel J.

Angew Chem Int Ed Engl. 2017 Jan 16;56(3):762-766. doi: 10.1002/anie.201609469. Epub 2016 Dec 13.

PMID:
27958669
9.

Polytheonamide biosynthesis showcasing the metabolic potential of sponge-associated uncultivated 'Entotheonella' bacteria.

Freeman MF, Vagstad AL, Piel J.

Curr Opin Chem Biol. 2016 Apr;31:8-14. doi: 10.1016/j.cbpa.2015.11.002. Epub 2015 Nov 25. Review.

PMID:
26625171
10.

Radical S-adenosyl methionine epimerases: regioselective introduction of diverse D-amino acid patterns into peptide natural products.

Morinaka BI, Vagstad AL, Helf MJ, Gugger M, Kegler C, Freeman MF, Bode HB, Piel J.

Angew Chem Int Ed Engl. 2014 Aug 4;53(32):8503-7. doi: 10.1002/anie.201400478. Epub 2014 Jun 18.

PMID:
24943072
11.

Exploring the role of conformational heterogeneity in cis-autoproteolytic activation of ThnT.

Buller AR, Freeman MF, Schildbach JF, Townsend CA.

Biochemistry. 2014 Jul 8;53(26):4273-81. doi: 10.1021/bi500385d. Epub 2014 Jun 26.

12.

Manipulation of regulatory genes reveals complexity and fidelity in hormaomycin biosynthesis.

Cai X, Teta R, Kohlhaas C, Crüsemann M, Ueoka R, Mangoni A, Freeman MF, Piel J.

Chem Biol. 2013 Jun 20;20(6):839-46. doi: 10.1016/j.chembiol.2013.04.018.

13.

Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides.

Freeman MF, Gurgui C, Helf MJ, Morinaka BI, Uria AR, Oldham NJ, Sahl HG, Matsunaga S, Piel J.

Science. 2012 Oct 19;338(6105):387-90. doi: 10.1126/science.1226121. Epub 2012 Sep 13.

14.

Autoproteolytic activation of ThnT results in structural reorganization necessary for substrate binding and catalysis.

Buller AR, Labonte JW, Freeman MF, Wright NT, Schildbach JF, Townsend CA.

J Mol Biol. 2012 Sep 28;422(4):508-18. doi: 10.1016/j.jmb.2012.06.012. Epub 2012 Jun 15.

15.

Insights into cis-autoproteolysis reveal a reactive state formed through conformational rearrangement.

Buller AR, Freeman MF, Wright NT, Schildbach JF, Townsend CA.

Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2308-13. doi: 10.1073/pnas.1113633109. Epub 2012 Jan 30.

16.

Engineering the synthetic potential of β-lactam synthetase and the importance of catalytic loop dynamics.

Labonte JW, Kudo F, Freeman MF, Raber ML, Townsend CA.

Medchemcomm. 2012 Jan 1;3:960-966.

17.

Definition of the common and divergent steps in carbapenem β-lactam antibiotic biosynthesis.

Bodner MJ, Li R, Phelan RM, Freeman MF, Moshos KA, Lloyd EP, Townsend CA.

Chembiochem. 2011 Sep 19;12(14):2159-65. doi: 10.1002/cbic.201100366. Epub 2011 Aug 24.

18.

The Catalytic Diversity of Multimodular Polyketide Synthases: Natural Product Biosynthesis Beyond Textbook Assembly Rules.

Gulder TA, Freeman MF, Piel J.

Top Curr Chem. 2011 Mar 1. [Epub ahead of print]

PMID:
21360321
19.

Non-heme iron oxygenases generate natural structural diversity in carbapenem antibiotics.

Bodner MJ, Phelan RM, Freeman MF, Li R, Townsend CA.

J Am Chem Soc. 2010 Jan 13;132(1):12-3. doi: 10.1021/ja907320n.

20.

Dissection of the stepwise mechanism to beta-lactam formation and elucidation of a rate-determining conformational change in beta-lactam synthetase.

Raber ML, Freeman MF, Townsend CA.

J Biol Chem. 2009 Jan 2;284(1):207-17. doi: 10.1074/jbc.M805390200. Epub 2008 Oct 27.

21.

Four enzymes define the incorporation of coenzyme A in thienamycin biosynthesis.

Freeman MF, Moshos KA, Bodner MJ, Li R, Townsend CA.

Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11128-33. doi: 10.1073/pnas.0804500105. Epub 2008 Aug 4.

22.

Clinical characteristics of patients with an abnormal clomiphene citrate challenge test.

Tobar Hicks AB, Fox MD, Sanchez-Ramos L, Kaunitz AM, Freeman MF.

Am J Obstet Gynecol. 2003 Aug;189(2):348-52; discussion 352-3.

PMID:
14520190
23.

Vaporisers.

Cartwright DP, Freeman MF.

Anaesthesia. 1999 Jun;54(6):519-20. No abstract available.

24.

Medical devices vigilance: the European approach.

Freeman MF.

Stud Health Technol Inform. 1996;28:13-6.

PMID:
10172826

Supplemental Content

Loading ...
Support Center