Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs.

Hewitt SL, Bai A, Bailey D, Ichikawa K, Zielinski J, Karp R, Apte A, Arnold K, Zacharek SJ, Iliou MS, Bhatt K, Garnaas M, Musenge F, Davis A, Khatwani N, Su SV, MacLean G, Farlow SJ, Burke K, Frederick JP.

Sci Transl Med. 2019 Jan 30;11(477). pii: eaat9143. doi: 10.1126/scitranslmed.aat9143.

PMID:
30700577
2.

MicroRNAs Enable mRNA Therapeutics to Selectively Program Cancer Cells to Self-Destruct.

Jain R, Frederick JP, Huang EY, Burke KE, Mauger DM, Andrianova EA, Farlow SJ, Siddiqui S, Pimentel J, Cheung-Ong K, McKinney KM, Köhrer C, Moore MJ, Chakraborty T.

Nucleic Acid Ther. 2018 Oct;28(5):285-296. doi: 10.1089/nat.2018.0734. Epub 2018 Aug 8.

3.

Role for cytoplasmic nucleotide hydrolysis in hepatic function and protein synthesis.

Hudson BH, Frederick JP, Drake LY, Megosh LC, Irving RP, York JD.

Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5040-5. doi: 10.1073/pnas.1205001110. Epub 2013 Mar 11.

4.

A role for a lithium-inhibited Golgi nucleotidase in skeletal development and sulfation.

Frederick JP, Tafari AT, Wu SM, Megosh LC, Chiou ST, Irving RP, York JD.

Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11605-12. doi: 10.1073/pnas.0801182105. Epub 2008 Aug 11.

5.

Roles for inositol polyphosphate kinases in the regulation of nuclear processes and developmental biology.

Seeds AM, Frederick JP, Tsui MM, York JD.

Adv Enzyme Regul. 2007;47:10-25. Epub 2007 Jan 5. Review. No abstract available.

6.

Inositol phosphate metabolomics: merging genetic perturbation with modernized radiolabeling methods.

Stevenson-Paulik J, Chiou ST, Frederick JP, dela Cruz J, Seeds AM, Otto JC, York JD.

Methods. 2006 Jun;39(2):112-21. Review.

PMID:
16829132
7.

An essential role for an inositol polyphosphate multikinase, Ipk2, in mouse embryogenesis and second messenger production.

Frederick JP, Mattiske D, Wofford JA, Megosh LC, Drake LY, Chiou ST, Hogan BL, York JD.

Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8454-9. Epub 2005 Jun 6.

8.

Casein kinase Iepsilon plays a functional role in the transforming growth factor-beta signaling pathway.

Waddell DS, Liberati NT, Guo X, Frederick JP, Wang XF.

J Biol Chem. 2004 Jul 9;279(28):29236-46. Epub 2004 May 7.

9.
10.

Transforming growth factor-beta1 inhibition of vascular smooth muscle cell activation is mediated via Smad3.

Feinberg MW, Watanabe M, Lebedeva MA, Depina AS, Hanai J, Mammoto T, Frederick JP, Wang XF, Sukhatme VP, Jain MK.

J Biol Chem. 2004 Apr 16;279(16):16388-93. Epub 2004 Feb 1.

11.

Essential role for Smad3 in regulating MCP-1 expression and vascular inflammation.

Feinberg MW, Shimizu K, Lebedeva M, Haspel R, Takayama K, Chen Z, Frederick JP, Wang XF, Simon DI, Libby P, Mitchell RN, Jain MK.

Circ Res. 2004 Mar 19;94(5):601-8. Epub 2004 Jan 29.

PMID:
14752027
12.

Beta-arrestin 2 mediates endocytosis of type III TGF-beta receptor and down-regulation of its signaling.

Chen W, Kirkbride KC, How T, Nelson CD, Mo J, Frederick JP, Wang XF, Lefkowitz RJ, Blobe GC.

Science. 2003 Sep 5;301(5638):1394-7.

13.

Smads "freeze" when they ski.

Frederick JP, Wang XF.

Structure. 2002 Dec;10(12):1607-11. Review.

14.

Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice.

Zhao J, Shi W, Wang YL, Chen H, Bringas P Jr, Datto MB, Frederick JP, Wang XF, Warburton D.

Am J Physiol Lung Cell Mol Physiol. 2002 Mar;282(3):L585-93.

15.

The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis.

Borton AJ, Frederick JP, Datto MB, Wang XF, Weinstein RS.

J Bone Miner Res. 2001 Oct;16(10):1754-64.

16.

The role of Smad3 in mediating mouse hepatic stellate cell activation.

Schnabl B, Kweon YO, Frederick JP, Wang XF, Rippe RA, Brenner DA.

Hepatology. 2001 Jul;34(1):89-100.

PMID:
11431738
17.

Impaired immune responses and B-cell proliferation in mice lacking the Id3 gene.

Pan L, Sato S, Frederick JP, Sun XH, Zhuang Y.

Mol Cell Biol. 1999 Sep;19(9):5969-80.

18.

Smads bind directly to the Jun family of AP-1 transcription factors.

Liberati NT, Datto MB, Frederick JP, Shen X, Wong C, Rougier-Chapman EM, Wang XF.

Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4844-9.

19.

Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction.

Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y, Wang XF.

Mol Cell Biol. 1999 Apr;19(4):2495-504.

20.

Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta.

Wong C, Rougier-Chapman EM, Frederick JP, Datto MB, Liberati NT, Li JM, Wang XF.

Mol Cell Biol. 1999 Mar;19(3):1821-30.

21.

TGF-beta-induced phosphorylation of Smad3 regulates its interaction with coactivator p300/CREB-binding protein.

Shen X, Hu PP, Liberati NT, Datto MB, Frederick JP, Wang XF.

Mol Biol Cell. 1998 Dec;9(12):3309-19.

22.

Tumor suppressor Smad4 is a transforming growth factor beta-inducible DNA binding protein.

Yingling JM, Datto MB, Wong C, Frederick JP, Liberati NT, Wang XF.

Mol Cell Biol. 1997 Dec;17(12):7019-28.

Supplemental Content

Loading ...
Support Center