Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 46

1.

Phosphatidic acid induces conformational changes in Sec18 protomers that prevent SNARE priming.

Starr ML, Sparks RP, Arango AS, Hurst LR, Zhao Z, Lihan M, Jenkins JL, Tajkhorshid E, Fratti RA.

J Biol Chem. 2019 Mar 1;294(9):3100-3116. doi: 10.1074/jbc.RA118.006552. Epub 2019 Jan 7.

PMID:
30617180
2.

The Participation of Regulatory Lipids in Vacuole Homotypic Fusion.

Starr ML, Fratti RA.

Trends Biochem Sci. 2019 Jun;44(6):546-554. doi: 10.1016/j.tibs.2018.12.003. Epub 2018 Dec 23. Review.

PMID:
30587414
3.

Phosphatidylinositol 3,5-bisphosphate regulates the transition between trans-SNARE complex formation and vacuole membrane fusion.

Miner GE, Sullivan KD, Guo A, Jones BC, Hurst LR, Ellis EC, Starr ML, Fratti RA.

Mol Biol Cell. 2019 Jan 15;30(2):201-208. doi: 10.1091/mbc.E18-08-0505. Epub 2018 Nov 14.

4.

Real-Time Fluorescence Detection of Calcium Efflux During Vacuolar Membrane Fusion.

Miner GE, Fratti R.

Methods Mol Biol. 2019;1860:323-331. doi: 10.1007/978-1-4939-8760-3_21.

PMID:
30317515
5.

Determination of Sec18-Lipid Interactions by Liposome-Binding Assay.

Starr ML, Fratti R.

Methods Mol Biol. 2019;1860:211-220. doi: 10.1007/978-1-4939-8760-3_13.

PMID:
30317507
6.

Use of Surface Plasmon Resonance (SPR) to Determine Binding Affinities and Kinetic Parameters Between Components Important in Fusion Machinery.

Sparks RP, Jenkins JL, Fratti R.

Methods Mol Biol. 2019;1860:199-210. doi: 10.1007/978-1-4939-8760-3_12.

PMID:
30317506
7.

Use of Microscale Thermophoresis (MST) to Measure Binding Affinities of Components of the Fusion Machinery.

Sparks RP, Fratti R.

Methods Mol Biol. 2019;1860:191-198. doi: 10.1007/978-1-4939-8760-3_11.

PMID:
30317505
8.

Deleting the DAG kinase Dgk1 augments yeast vacuole fusion through increased Ypt7 activity and altered membrane fluidity.

Miner GE, Starr ML, Hurst LR, Fratti RA.

Traffic. 2017 May;18(5):315-329. doi: 10.1111/tra.12479. Epub 2017 Apr 4.

9.

Phosphatidylinositol (3,4,5)-trisphosphate binds to sortilin and competes with neurotensin: Implications for very low density lipoprotein binding.

Sparks RP, Jenkins JL, Miner GE, Wang Y, Guida WC, Sparks CE, Fratti RA, Sparks JD.

Biochem Biophys Res Commun. 2016 Oct 21;479(3):551-556. doi: 10.1016/j.bbrc.2016.09.108. Epub 2016 Sep 22.

10.

Sortilin facilitates VLDL-B100 secretion by insulin sensitive McArdle RH7777 cells.

Sparks RP, Guida WC, Sowden MP, Jenkins JL, Starr ML, Fratti RA, Sparks CE, Sparks JD.

Biochem Biophys Res Commun. 2016 Sep 16;478(2):546-52. doi: 10.1016/j.bbrc.2016.07.096. Epub 2016 Aug 2.

11.

The Central Polybasic Region of the Soluble SNARE (Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor) Vam7 Affects Binding to Phosphatidylinositol 3-Phosphate by the PX (Phox Homology) Domain.

Miner GE, Starr ML, Hurst LR, Sparks RP, Padolina M, Fratti RA.

J Biol Chem. 2016 Aug 19;291(34):17651-63. doi: 10.1074/jbc.M116.725366. Epub 2016 Jun 30.

12.

Phosphatidic Acid Sequesters Sec18p from cis-SNARE Complexes to Inhibit Priming.

Starr ML, Hurst LR, Fratti RA.

Traffic. 2016 Oct;17(10):1091-109. doi: 10.1111/tra.12423. Epub 2016 Jul 24.

13.

Class C ABC transporters and Saccharomyces cerevisiae vacuole fusion.

Sasser TL, Fratti RA.

Cell Logist. 2014 Jul 3;4(3):e943588. eCollection 2014 Jul-Sep.

14.

Dynamic association of the PI3P-interacting Mon1-Ccz1 GEF with vacuoles is controlled through its phosphorylation by the type 1 casein kinase Yck3.

Lawrence G, Brown CC, Flood BA, Karunakaran S, Cabrera M, Nordmann M, Ungermann C, Fratti RA.

Mol Biol Cell. 2014 May;25(10):1608-19. doi: 10.1091/mbc.E13-08-0460. Epub 2014 Mar 12.

15.

The yeast ATP-binding cassette (ABC) transporter Ycf1p enhances the recruitment of the soluble SNARE Vam7p to vacuoles for efficient membrane fusion.

Sasser TL, Lawrence G, Karunakaran S, Brown C, Fratti RA.

J Biol Chem. 2013 Jun 21;288(25):18300-10. doi: 10.1074/jbc.M112.441089. Epub 2013 May 8.

16.

The lipid composition and physical properties of the yeast vacuole affect the hemifusion-fusion transition.

Karunakaran S, Fratti RA.

Traffic. 2013 Jun;14(6):650-62. doi: 10.1111/tra.12064. Epub 2013 Mar 20.

17.

The yeast vacuolar ABC transporter Ybt1p regulates membrane fusion through Ca2+ transport modulation.

Sasser TL, Padolina M, Fratti RA.

Biochem J. 2012 Dec 15;448(3):365-72. doi: 10.1042/BJ20120847.

18.

SNAREs, HOPS and regulatory lipids control the dynamics of vacuolar actin during homotypic fusion in S. cerevisiae.

Karunakaran S, Sasser T, Rajalekshmi S, Fratti RA.

J Cell Sci. 2012 Apr 1;125(Pt 7):1683-92. doi: 10.1242/jcs.091900. Epub 2012 Feb 22.

19.

Yeast lipin 1 orthologue pah1p regulates vacuole homeostasis and membrane fusion.

Sasser T, Qiu QS, Karunakaran S, Padolina M, Reyes A, Flood B, Smith S, Gonzales C, Fratti RA.

J Biol Chem. 2012 Jan 13;287(3):2221-36. doi: 10.1074/jbc.M111.317420. Epub 2011 Nov 25.

20.

The Na+/H+ exchanger Nhx1p regulates the initiation of Saccharomyces cerevisiae vacuole fusion.

Qiu QS, Fratti RA.

J Cell Sci. 2010 Oct 1;123(Pt 19):3266-75. doi: 10.1242/jcs.067637. Epub 2010 Sep 7.

21.

Stringent 3Q.1R composition of the SNARE 0-layer can be bypassed for fusion by compensatory SNARE mutation or by lipid bilayer modification.

Fratti RA, Collins KM, Hickey CM, Wickner W.

J Biol Chem. 2007 May 18;282(20):14861-7. Epub 2007 Mar 30.

22.

Distinct targeting and fusion functions of the PX and SNARE domains of yeast vacuolar Vam7p.

Fratti RA, Wickner W.

J Biol Chem. 2007 Apr 27;282(17):13133-8. Epub 2007 Mar 8.

23.

Reversible, cooperative reactions of yeast vacuole docking.

Jun Y, Thorngren N, Starai VJ, Fratti RA, Collins K, Wickner W.

EMBO J. 2006 Nov 15;25(22):5260-9. Epub 2006 Nov 2.

24.

Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p.

Stroupe C, Collins KM, Fratti RA, Wickner W.

EMBO J. 2006 Apr 19;25(8):1579-89. Epub 2006 Apr 6.

25.

Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion.

Collins KM, Thorngren NL, Fratti RA, Wickner WT.

EMBO J. 2005 May 18;24(10):1775-86. Epub 2005 May 5.

26.

Ion regulation of homotypic vacuole fusion in Saccharomyces cerevisiae.

Starai VJ, Thorngren N, Fratti RA, Wickner W.

J Biol Chem. 2005 Apr 29;280(17):16754-62. Epub 2005 Feb 28.

27.

N-cadherin mediates endocytosis of Candida albicans by endothelial cells.

Phan QT, Fratti RA, Prasadarao NV, Edwards JE Jr, Filler SG.

J Biol Chem. 2005 Mar 18;280(11):10455-61. Epub 2005 Jan 4.

28.
29.

Diacylglycerol and its formation by phospholipase C regulate Rab- and SNARE-dependent yeast vacuole fusion.

Jun Y, Fratti RA, Wickner W.

J Biol Chem. 2004 Dec 17;279(51):53186-95. Epub 2004 Oct 12.

30.

A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion.

Thorngren N, Collins KM, Fratti RA, Wickner W, Merz AJ.

EMBO J. 2004 Jul 21;23(14):2765-76. Epub 2004 Jul 8.

31.

Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection.

Miller BH, Fratti RA, Poschet JF, Timmins GS, Master SS, Burgos M, Marletta MA, Deretic V.

Infect Immun. 2004 May;72(5):2872-8.

32.

Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion.

Vergne I, Fratti RA, Hill PJ, Chua J, Belisle J, Deretic V.

Mol Biol Cell. 2004 Feb;15(2):751-60. Epub 2003 Nov 14.

33.
34.

Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest.

Fratti RA, Chua J, Vergne I, Deretic V.

Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5437-42. Epub 2003 Apr 17.

35.

Endocytosis of Candida albicans by vascular endothelial cells is associated with tyrosine phosphorylation of specific host cell proteins.

Belanger PH, Johnston DA, Fratti RA, Zhang M, Filler SG.

Cell Microbiol. 2002 Dec;4(12):805-12.

PMID:
12464011
36.

Cellubrevin alterations and Mycobacterium tuberculosis phagosome maturation arrest.

Fratti RA, Chua J, Deretic V.

J Biol Chem. 2002 May 10;277(19):17320-6. Epub 2002 Feb 1.

37.

Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest.

Fratti RA, Backer JM, Gruenberg J, Corvera S, Deretic V.

J Cell Biol. 2001 Aug 6;154(3):631-44.

38.

Regulators of membrane trafficking and Mycobacterium tuberculosis phagosome maturation block.

Fratti RA, Vergne I, Chua J, Skidmore J, Deretic V.

Electrophoresis. 2000 Oct;21(16):3378-85. Review.

PMID:
11079558
39.

Mycobacterium tuberculosis phagosome.

Deretic V, Fratti RA.

Mol Microbiol. 1999 Mar;31(6):1603-9. Review.

40.

Effects of cytokines on mycobacterial phagosome maturation.

Via LE, Fratti RA, McFalone M, Pagan-Ramos E, Deretic D, Deretic V.

J Cell Sci. 1998 Apr;111 ( Pt 7):897-905.

41.
42.

Mycobacterial phagosome maturation, rab proteins, and intracellular trafficking.

Deretic V, Via LE, Fratti RA, Deretic D.

Electrophoresis. 1997 Dec;18(14):2542-7. Review.

PMID:
9527483
43.

Endothelial cell injury caused by Candida albicans is dependent on iron.

Fratti RA, Belanger PH, Ghannoum MA, Edwards JE Jr, Filler SG.

Infect Immun. 1998 Jan;66(1):191-6.

44.

A new triazole, voriconazole (UK-109,496), blocks sterol biosynthesis in Candida albicans and Candida krusei.

Sanati H, Belanger P, Fratti R, Ghannoum M.

Antimicrob Agents Chemother. 1997 Nov;41(11):2492-6.

45.

Voriconazole (UK-109,496) inhibits the growth and alters the morphology of fluconazole-susceptible and -resistant Candida species.

Belanger P, Nast CC, Fratti R, Sanati H, Ghannoum M.

Antimicrob Agents Chemother. 1997 Aug;41(8):1840-2.

46.

Supplemental Content

Loading ...
Support Center