Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 16

1.

Type 2 NADH Dehydrogenase Is the Only Point of Entry for Electrons into the Streptococcus agalactiae Respiratory Chain and Is a Potential Drug Target.

Lencina AM, Franza T, Sullivan MJ, Ulett GC, Ipe DS, Gaudu P, Gennis RB, Schurig-Briccio LA.

MBio. 2018 Jul 3;9(4). pii: e01034-18. doi: 10.1128/mBio.01034-18.

2.

A partial metabolic pathway enables group b streptococcus to overcome quinone deficiency in a host bacterial community.

Franza T, Delavenne E, Derré-Bobillot A, Juillard V, Boulay M, Demey E, Vinh J, Lamberet G, Gaudu P.

Mol Microbiol. 2016 Oct;102(1):81-91. doi: 10.1111/mmi.13447. Epub 2016 Jul 8.

3.

Role of iron homeostasis in the virulence of phytopathogenic bacteria: an 'à la carte' menu.

Franza T, Expert D.

Mol Plant Pathol. 2013 May;14(4):429-38. doi: 10.1111/mpp.12007. Epub 2012 Nov 21. Review.

4.

The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity.

Charkowski A, Blanco C, Condemine G, Expert D, Franza T, Hayes C, Hugouvieux-Cotte-Pattat N, López Solanilla E, Low D, Moleleki L, Pirhonen M, Pitman A, Perna N, Reverchon S, Rodríguez Palenzuela P, San Francisco M, Toth I, Tsuyumu S, van der Waals J, van der Wolf J, Van Gijsegem F, Yang CH, Yedidia I.

Annu Rev Phytopathol. 2012;50:425-49. doi: 10.1146/annurev-phyto-081211-173013. Epub 2012 Jun 12. Review.

PMID:
22702350
5.

Role of the Dickeya dadantii Dps protein.

Boughammoura A, Expert D, Franza T.

Biometals. 2012 Apr;25(2):423-33. doi: 10.1007/s10534-011-9515-5. Epub 2011 Dec 28.

PMID:
22203404
6.

Genome sequence of the plant-pathogenic bacterium Dickeya dadantii 3937.

Glasner JD, Yang CH, Reverchon S, Hugouvieux-Cotte-Pattat N, Condemine G, Bohin JP, Van Gijsegem F, Yang S, Franza T, Expert D, Plunkett G 3rd, San Francisco MJ, Charkowski AO, Py B, Bell K, Rauscher L, Rodriguez-Palenzuela P, Toussaint A, Holeva MC, He SY, Douet V, Boccara M, Blanco C, Toth I, Anderson BD, Biehl BS, Mau B, Flynn SM, Barras F, Lindeberg M, Birch PR, Tsuyumu S, Shi X, Hibbing M, Yap MN, Carpentier M, Dassa E, Umehara M, Kim JF, Rusch M, Soni P, Mayhew GF, Fouts DE, Gill SR, Blattner FR, Keen NT, Perna NT.

J Bacteriol. 2011 Apr;193(8):2076-7. doi: 10.1128/JB.01513-10. Epub 2011 Jan 7.

7.
8.

Differential role of ferritins in iron metabolism and virulence of the plant-pathogenic bacterium Erwinia chrysanthemi 3937.

Boughammoura A, Matzanke BF, Böttger L, Reverchon S, Lesuisse E, Expert D, Franza T.

J Bacteriol. 2008 Mar;190(5):1518-30. doi: 10.1128/JB.01640-07. Epub 2007 Dec 28.

9.

Ferritins, bacterial virulence and plant defence.

Boughammoura A, Franza T, Dellagi A, Roux C, Matzanke-Markstein B, Expert D.

Biometals. 2007 Jun;20(3-4):347-53. Epub 2007 Jan 10. Review.

PMID:
17216356
11.

Coupling of iron assimilation and pectinolysis in Erwinia chrysanthemi 3937.

Franza T, Michaud-Soret I, Piquerel P, Expert D.

Mol Plant Microbe Interact. 2002 Nov;15(11):1181-91.

12.

Essential role of superoxide dismutase on the pathogenicity of Erwinia chrysanthemi strain 3937.

Santos R, Franza T, Laporte ML, Sauvage C, Touati D, Expert D.

Mol Plant Microbe Interact. 2001 Jun;14(6):758-67.

13.

Iron regulation and pathogenicity in Erwinia chrysanthemi 3937: role of the Fur repressor protein.

Franza T, Sauvage C, Expert D.

Mol Plant Microbe Interact. 1999 Feb;12(2):119-28.

Supplemental Content

Loading ...
Support Center