Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 29

1.

Draft Genome Sequence of Bacillus coagulans MA-13, a Thermophilic Lactic Acid Producer from Lignocellulose.

Aulitto M, Fusco S, Franzén CJ, Strazzulli A, Moracci M, Bartolucci S, Contursi P.

Microbiol Resour Announc. 2019 Jun 6;8(23). pii: e00341-19. doi: 10.1128/MRA.00341-19.

2.

Seed culture pre-adaptation of Bacillus coagulans MA-13 improves lactic acid production in simultaneous saccharification and fermentation.

Aulitto M, Fusco S, Nickel DB, Bartolucci S, Contursi P, Franzén CJ.

Biotechnol Biofuels. 2019 Feb 28;12:45. doi: 10.1186/s13068-019-1382-2. eCollection 2019.

3.

Presence of galactose in precultures induces lacS and leads to short lag phase in lactose-grown Lactococcus lactis cultures.

Lorántfy B, Johanson A, Faria-Oliveira F, Franzén CJ, Mapelli V, Olsson L.

J Ind Microbiol Biotechnol. 2019 Jan;46(1):33-43. doi: 10.1007/s10295-018-2099-0. Epub 2018 Nov 9.

4.

A novel chimaeric flocculation protein enhances flocculation in Saccharomyces cerevisiae.

Westman JO, Nyman J, Manara RMA, Mapelli V, Franzén CJ.

Metab Eng Commun. 2018 Apr 9;6:49-55. doi: 10.1016/j.meteno.2018.04.001. eCollection 2018 Jun.

5.

Sustaining fermentation in high-gravity ethanol production by feeding yeast to a temperature-profiled multifeed simultaneous saccharification and co-fermentation of wheat straw.

Westman JO, Wang R, Novy V, Franzén CJ.

Biotechnol Biofuels. 2017 Sep 12;10:213. doi: 10.1186/s13068-017-0893-y. eCollection 2017.

6.

Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate.

Aulitto M, Fusco S, Bartolucci S, Franzén CJ, Contursi P.

Biotechnol Biofuels. 2017 Sep 7;10:210. doi: 10.1186/s13068-017-0896-8. eCollection 2017.

7.
8.
9.

Current progress in high cell density yeast bioprocesses for bioethanol production.

Westman JO, Franzén CJ.

Biotechnol J. 2015 Aug;10(8):1185-95. doi: 10.1002/biot.201400581. Epub 2015 Jul 24. Review.

PMID:
26211654
10.

Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae.

Pornkamol U, Franzen CJ.

Biotechnol J. 2015 Aug;10(8):1248-58. doi: 10.1002/biot.201400833. Epub 2015 May 11.

PMID:
25880365
11.

Kinetic modeling of multi-feed simultaneous saccharification and co-fermentation of pretreated birch to ethanol.

Wang R, Koppram R, Olsson L, Franzén CJ.

Bioresour Technol. 2014 Nov;172:303-311. doi: 10.1016/j.biortech.2014.09.028. Epub 2014 Sep 16.

PMID:
25270046
12.

Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production.

Westman JO, Mapelli V, Taherzadeh MJ, Franzén CJ.

Appl Environ Microbiol. 2014 Nov;80(22):6908-18. doi: 10.1128/AEM.01906-14. Epub 2014 Aug 29.

13.

Improved sugar co-utilisation by encapsulation of a recombinant Saccharomyces cerevisiae strain in alginate-chitosan capsules.

Westman JO, Bonander N, Taherzadeh MJ, Franzén CJ.

Biotechnol Biofuels. 2014 Jul 3;7:102. doi: 10.1186/1754-6834-7-102. eCollection 2014.

14.

Continuous ethanol production with a membrane bioreactor at high acetic Acid concentrations.

Ylitervo P, Franzén CJ, Taherzadeh MJ.

Membranes (Basel). 2014 Jul 15;4(3):372-87. doi: 10.3390/membranes4030372.

15.

Proteomic analysis of the increased stress tolerance of saccharomyces cerevisiae encapsulated in liquid core alginate-chitosan capsules.

Westman JO, Taherzadeh MJ, Franzén CJ.

PLoS One. 2012;7(11):e49335. doi: 10.1371/journal.pone.0049335. Epub 2012 Nov 9.

16.

Encapsulation-induced stress helps Saccharomyces cerevisiae resist convertible Lignocellulose derived inhibitors.

Westman JO, Manikondu RB, Franzén CJ, Taherzadeh MJ.

Int J Mol Sci. 2012;13(9):11881-94. doi: 10.3390/ijms130911881. Epub 2012 Sep 19.

17.

Effects of encapsulation of microorganisms on product formation during microbial fermentations.

Westman JO, Ylitervo P, Franzén CJ, Taherzadeh MJ.

Appl Microbiol Biotechnol. 2012 Dec;96(6):1441-54. doi: 10.1007/s00253-012-4517-y. Epub 2012 Oct 28. Review.

PMID:
23104646
18.

Selective suppression of bacterial contaminants by process conditions during lignocellulose based yeast fermentations.

Albers E, Johansson E, Franzén CJ, Larsson C.

Biotechnol Biofuels. 2011 Dec 20;4(1):59. doi: 10.1186/1754-6834-4-59.

19.

Ethanol production at elevated temperatures using encapsulation of yeast.

Ylitervo P, Franzén CJ, Taherzadeh MJ.

J Biotechnol. 2011 Oct 20;156(1):22-9. doi: 10.1016/j.jbiotec.2011.07.018. Epub 2011 Jul 22.

PMID:
21807041
20.

Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux.

Bosch D, Johansson M, Ferndahl C, Franzén CJ, Larsson C, Gustafsson L.

FEMS Yeast Res. 2008 Feb;8(1):10-25. Epub 2007 Nov 26.

21.

Conservation laws and unidentifiability of rate expressions in biochemical models.

Anguelova M, Cedersund G, Johansson M, Franzén CJ, Wennberg B.

IET Syst Biol. 2007 Jul;1(4):230-7.

PMID:
17708430
22.

Continuous fermentation of wheat-supplemented lignocellulose hydrolysate with different types of cell retention.

Brandberg T, Karimi K, Taherzadeh MJ, Franzén CJ, Gustafsson L.

Biotechnol Bioeng. 2007 Sep 1;98(1):80-90.

PMID:
17335066
23.
24.

Continuous fermentation of undetoxified dilute acid lignocellulose hydrolysate by Saccharomyces cerevisiae ATCC 96581 using cell recirculation.

Brandberg T, Sanandaji N, Gustafsson L, Franzén CJ.

Biotechnol Prog. 2005 Jul-Aug;21(4):1093-101.

PMID:
16080688
25.

Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats.

Sárvári Horváth I, Franzén CJ, Taherzadeh MJ, Niklasson C, Lidén G.

Appl Environ Microbiol. 2003 Jul;69(7):4076-86.

26.

Carbon starvation can induce energy deprivation and loss of fermentative capacity in Saccharomyces cerevisiae.

Thomsson E, Larsson C, Albers E, Nilsson A, Franzén CJ, Gustafsson L.

Appl Environ Microbiol. 2003 Jun;69(6):3251-7.

28.

Microaerobic glycerol formation in Saccharomyces cerevisiae.

Costenoble R, Valadi H, Gustafsson L, Niklasson C, Franzén CJ.

Yeast. 2000 Dec;16(16):1483-95.

29.

A new method for studying microaerobic fermentations. II. An experimental investigation of xylose fermentation.

Franzén CJ, Lidén G, Niklasson C.

Biotechnol Bioeng. 1994 Aug 5;44(4):429-35.

PMID:
18618776

Supplemental Content

Loading ...
Support Center