Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 19

1.

Latexin regulation by HMGB2 is required for hematopoietic stem cell maintenance.

Zhang C, Fondufe-Mittendorf YN, Wang C, Chen J, Cheng Q, Zhou D, Zheng Y, Geiger H, Liang Y.

Haematologica. 2020 Mar;105(3):573-584. doi: 10.3324/haematol.2018.207092. Epub 2019 Jun 6.

2.

Transcriptional Regulation Factors of the Human Mitochondrial Aspartate/Glutamate Carrier Gene, Isoform 2 (SLC25A13): USF1 as Basal Factor and FOXA2 as Activator in Liver Cells.

Convertini P, Todisco S, De Santis F, Pappalardo I, Iacobazzi D, Castiglione Morelli MA, Fondufe-Mittendorf YN, Martelli G, Palmieri F, Infantino V.

Int J Mol Sci. 2019 Apr 16;20(8). pii: E1888. doi: 10.3390/ijms20081888.

3.

PARP1 is a versatile factor in the regulation of mRNA stability and decay.

Matveeva EA, Mathbout LF, Fondufe-Mittendorf YN.

Sci Rep. 2019 Mar 6;9(1):3722. doi: 10.1038/s41598-019-39969-7.

4.

Coupling of PARP1-mediated chromatin structural changes to transcriptional RNA polymerase II elongation and cotranscriptional splicing.

Matveeva EA, Al-Tinawi QMH, Rouchka EC, Fondufe-Mittendorf YN.

Epigenetics Chromatin. 2019 Feb 18;12(1):15. doi: 10.1186/s13072-019-0261-1.

5.

Transcriptome-wide identification of the RNA-binding landscape of the chromatin-associated protein PARP1 reveals functions in RNA biogenesis.

Melikishvili M, Chariker JH, Rouchka EC, Fondufe-Mittendorf YN.

Cell Discov. 2017 Nov 28;3:17043. doi: 10.1038/celldisc.2017.43. eCollection 2017.

6.

Microarray dataset of transient and permanent DNA methylation changes in HeLa cells undergoing inorganic arsenic-mediated epithelial-to-mesenchymal transition.

Eckstein M, Rea M, Fondufe-Mittendorf YN.

Data Brief. 2017 May 10;13:6-9. doi: 10.1016/j.dib.2017.05.002. eCollection 2017 Aug.

7.

A comparison of nucleosome organization in Drosophila cell lines.

Martin RL, Maiorano J, Beitel GJ, Marko JF, McVicker G, Fondufe-Mittendorf YN.

PLoS One. 2017 Jun 1;12(6):e0178590. doi: 10.1371/journal.pone.0178590. eCollection 2017.

8.

Transient and permanent changes in DNA methylation patterns in inorganic arsenic-mediated epithelial-to-mesenchymal transition.

Eckstein M, Rea M, Fondufe-Mittendorf YN.

Toxicol Appl Pharmacol. 2017 Sep 15;331:6-17. doi: 10.1016/j.taap.2017.03.017. Epub 2017 Mar 21.

9.

Genome-wide DNA methylation reprogramming in response to inorganic arsenic links inhibition of CTCF binding, DNMT expression and cellular transformation.

Rea M, Eckstein M, Eleazer R, Smith C, Fondufe-Mittendorf YN.

Sci Rep. 2017 Feb 2;7:41474. doi: 10.1038/srep41474.

10.

Comparative analysis of linker histone H1, MeCP2, and HMGD1 on nucleosome stability and target site accessibility.

Riedmann C, Fondufe-Mittendorf YN.

Sci Rep. 2016 Sep 14;6:33186. doi: 10.1038/srep33186.

11.

Involvement of PARP1 in the regulation of alternative splicing.

Matveeva E, Maiorano J, Zhang Q, Eteleeb AM, Convertini P, Chen J, Infantino V, Stamm S, Wang J, Rouchka EC, Fondufe-Mittendorf YN.

Cell Discov. 2016 Feb 16;2:15046. doi: 10.1038/celldisc.2015.46. eCollection 2016.

12.

Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation.

Rea M, Jiang T, Eleazer R, Eckstein M, Marshall AG, Fondufe-Mittendorf YN.

Mol Cell Proteomics. 2016 Jul;15(7):2411-22. doi: 10.1074/mcp.M116.058412. Epub 2016 May 11.

13.

Genome-Wide Profiling of PARP1 Reveals an Interplay with Gene Regulatory Regions and DNA Methylation.

Nalabothula N, Al-jumaily T, Eteleeb AM, Flight RM, Xiaorong S, Moseley H, Rouchka EC, Fondufe-Mittendorf YN.

PLoS One. 2015 Aug 25;10(8):e0135410. doi: 10.1371/journal.pone.0135410. eCollection 2015.

14.

Inorganic Arsenic-induced cellular transformation is coupled with genome wide changes in chromatin structure, transcriptome and splicing patterns.

Riedmann C, Ma Y, Melikishvili M, Godfrey SG, Zhang Z, Chen KC, Rouchka EC, Fondufe-Mittendorf YN.

BMC Genomics. 2015 Mar 19;16:212. doi: 10.1186/s12864-015-1295-9.

15.

Sudemycin E influences alternative splicing and changes chromatin modifications.

Convertini P, Shen M, Potter PM, Palacios G, Lagisetti C, de la Grange P, Horbinski C, Fondufe-Mittendorf YN, Webb TR, Stamm S.

Nucleic Acids Res. 2014 Apr;42(8):4947-61. doi: 10.1093/nar/gku151. Epub 2014 Mar 11.

16.

The chromatin architectural proteins HMGD1 and H1 bind reciprocally and have opposite effects on chromatin structure and gene regulation.

Nalabothula N, McVicker G, Maiorano J, Martin R, Pritchard JK, Fondufe-Mittendorf YN.

BMC Genomics. 2014 Feb 1;15:92. doi: 10.1186/1471-2164-15-92.

17.

Archaeal nucleosome positioning in vivo and in vitro is directed by primary sequence motifs.

Nalabothula N, Xi L, Bhattacharyya S, Widom J, Wang JP, Reeve JN, Santangelo TJ, Fondufe-Mittendorf YN.

BMC Genomics. 2013 Jun 10;14:391. doi: 10.1186/1471-2164-14-391.

18.

Controls of nucleosome positioning in the human genome.

Gaffney DJ, McVicker G, Pai AA, Fondufe-Mittendorf YN, Lewellen N, Michelini K, Widom J, Gilad Y, Pritchard JK.

PLoS Genet. 2012;8(11):e1003036. doi: 10.1371/journal.pgen.1003036. Epub 2012 Nov 15.

19.

Two amino acid replacements change the substrate preference of DNA mismatch glycosylase Mig.MthI from T/G to A/G.

Fondufe-Mittendorf YN, Härer C, Kramer W, Fritz HJ.

Nucleic Acids Res. 2002 Jan 15;30(2):614-21.

Supplemental Content

Loading ...
Support Center