Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 102

1.

Viral Moulds and Cement: How Interactions among Human Adenovirus Hexons and Their Protein IX Cement May Buttress Human Adenovirus Particles.

Flint SJ.

J Mol Biol. 2017 Sep 1;429(18):2752-2754. doi: 10.1016/j.jmb.2017.07.008. Epub 2017 Jul 18. No abstract available.

PMID:
28728981
2.

Normal human cell proteins that interact with the adenovirus type 5 E1B 55kDa protein.

Hung G, Flint SJ.

Virology. 2017 Apr;504:12-24. doi: 10.1016/j.virol.2017.01.013. Epub 2017 Jan 27.

3.

Mechanics of Viral Chromatin Reveals the Pressurization of Human Adenovirus.

Ortega-Esteban A, Condezo GN, Pérez-Berná AJ, Chillón M, Flint SJ, Reguera D, San Martín C, de Pablo PJ.

ACS Nano. 2015 Nov 24;9(11):10826-33. doi: 10.1021/acsnano.5b03417. Epub 2015 Oct 28.

PMID:
26491879
4.

Impact of the adenoviral E4 Orf3 protein on the activity and posttranslational modification of p53.

DeHart CJ, Perlman DH, Flint SJ.

J Virol. 2015 Mar;89(6):3209-20. doi: 10.1128/JVI.03072-14. Epub 2015 Jan 7.

5.

Extensive post-translational modification of active and inactivated forms of endogenous p53.

DeHart CJ, Chahal JS, Flint SJ, Perlman DH.

Mol Cell Proteomics. 2014 Jan;13(1):1-17. doi: 10.1074/mcp.M113.030254. Epub 2013 Sep 20.

6.

The p53 protein does not facilitate adenovirus type 5 replication in normal human cells.

Chahal JS, Flint SJ.

J Virol. 2013 May;87(10):6044-6. doi: 10.1128/JVI.00129-13. Epub 2013 Mar 13.

7.

Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue.

Ortega-Esteban A, Pérez-Berná AJ, Menéndez-Conejero R, Flint SJ, San Martín C, de Pablo PJ.

Sci Rep. 2013;3:1434. doi: 10.1038/srep01434.

8.

The repression domain of the E1B 55-kilodalton protein participates in countering interferon-induced inhibition of adenovirus replication.

Chahal JS, Gallagher C, DeHart CJ, Flint SJ.

J Virol. 2013 Apr;87(8):4432-44. doi: 10.1128/JVI.03387-12. Epub 2013 Feb 6.

9.

Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: IV. viral proteinase slides along DNA to locate and process its substrates.

Blainey PC, Graziano V, Pérez-Berná AJ, McGrath WJ, Flint SJ, San Martín C, Xie XS, Mangel WF.

J Biol Chem. 2013 Jan 18;288(3):2092-102. doi: 10.1074/jbc.M112.407460. Epub 2012 Oct 7.

10.

Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: II. adenovirus proteinase is activated in an unusual one-dimensional biochemical reaction.

Graziano V, Luo G, Blainey PC, Pérez-Berná AJ, McGrath WJ, Flint SJ, San Martín C, Xie XS, Mangel WF.

J Biol Chem. 2013 Jan 18;288(3):2068-80. doi: 10.1074/jbc.M112.407312. Epub 2012 Oct 7.

11.
12.

The human adenovirus type 5 E1B 55 kDa protein obstructs inhibition of viral replication by type I interferon in normal human cells.

Chahal JS, Qi J, Flint SJ.

PLoS Pathog. 2012;8(8):e1002853. doi: 10.1371/journal.ppat.1002853. Epub 2012 Aug 9.

13.

The role of capsid maturation on adenovirus priming for sequential uncoating.

Pérez-Berná AJ, Ortega-Esteban A, Menéndez-Conejero R, Winkler DC, Menéndez M, Steven AC, Flint SJ, de Pablo PJ, San Martín C.

J Biol Chem. 2012 Sep 7;287(37):31582-95. doi: 10.1074/jbc.M112.389957. Epub 2012 Jul 12.

14.

Timely synthesis of the adenovirus type 5 E1B 55-kilodalton protein is required for efficient genome replication in normal human cells.

Chahal JS, Flint SJ.

J Virol. 2012 Mar;86(6):3064-72. doi: 10.1128/JVI.06764-11. Epub 2012 Jan 25.

15.

Role of the RNA recognition motif of the E1B 55 kDa protein in the adenovirus type 5 infectious cycle.

Kato SE, Huang W, Flint SJ.

Virology. 2011 Aug 15;417(1):9-17. doi: 10.1016/j.virol.2011.04.014. Epub 2011 May 24.

16.

Export of adenoviral late mRNA from the nucleus requires the Nxf1/Tap export receptor.

Yatherajam G, Huang W, Flint SJ.

J Virol. 2011 Feb;85(4):1429-38. doi: 10.1128/JVI.02108-10. Epub 2010 Dec 1.

17.

Structure and uncoating of immature adenovirus.

Pérez-Berná AJ, Marabini R, Scheres SH, Menéndez-Conejero R, Dmitriev IP, Curiel DT, Mangel WF, Flint SJ, San Martín C.

J Mol Biol. 2009 Sep 18;392(2):547-57. doi: 10.1016/j.jmb.2009.06.057. Epub 2009 Jun 27.

18.

The adenoviral E1B 55-kilodalton protein controls expression of immune response genes but not p53-dependent transcription.

Miller DL, Rickards B, Mashiba M, Huang W, Flint SJ.

J Virol. 2009 Apr;83(8):3591-603. doi: 10.1128/JVI.02269-08. Epub 2009 Feb 11.

19.

An early function of the adenoviral E1B 55 kDa protein is required for the nuclear relocalization of the cellular p53 protein in adenovirus-infected normal human cells.

Cardoso FM, Kato SE, Huang W, Flint SJ, Gonzalez RA.

Virology. 2008 Sep 1;378(2):339-46. doi: 10.1016/j.virol.2008.06.016. Epub 2008 Jul 15.

20.

The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription.

LeRoy G, Rickards B, Flint SJ.

Mol Cell. 2008 Apr 11;30(1):51-60. doi: 10.1016/j.molcel.2008.01.018.

21.

Analysis of the efficiency of adenovirus transcription.

Iftode C, Flint SJ.

Methods Mol Med. 2007;131:1-14.

PMID:
17656771
22.
23.

Nucleolin is required for RNA polymerase I transcription in vivo.

Rickards B, Flint SJ, Cole MD, LeRoy G.

Mol Cell Biol. 2007 Feb;27(3):937-48. Epub 2006 Nov 27.

26.
27.
28.
29.

Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins.

Flint SJ, Gonzalez RA.

Curr Top Microbiol Immunol. 2003;272:287-330. Review.

PMID:
12747554
30.
32.

Structure of the adenovirus E4 Orf6 protein predicted by fold recognition and comparative protein modeling.

Brown LM, Gonzalez RA, Novotny J, Flint SJ.

Proteins. 2001 Aug 1;44(2):97-109.

PMID:
11391772
34.
36.
37.

The metabolism of small cellular RNA species during productive subgroup C adenovirus infection.

Smiley JK, Young MA, Bansbach CC, Flint SJ.

Virology. 1995 Jan 10;206(1):100-7.

38.

Transcription of adenovirus RNA polymerase III genes.

Pruzan R, Flint SJ.

Curr Top Microbiol Immunol. 1995;199 ( Pt 1):201-26. Review. No abstract available.

PMID:
7555055
39.

In vivo transcription from the adenovirus E2 early promoter by RNA polymerase III.

Huang W, Pruzan R, Flint SJ.

Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1265-9.

40.
41.
42.
43.
44.

Mutational analysis of the adenovirus 2 IVa2 initiator and downstream elements.

Chen H, Flint SJ.

J Biol Chem. 1992 Dec 15;267(35):25457-65.

45.
46.
47.

Anatomy of an unusual RNA polymerase II promoter containing a downstream TATA element.

Kasai Y, Chen H, Flint SJ.

Mol Cell Biol. 1992 Jun;12(6):2884-97.

48.
49.

Intranuclear location of the adenovirus type 5 E1B 55-kilodalton protein.

Smiley JK, Young MA, Flint SJ.

J Virol. 1990 Sep;64(9):4558-64.

50.

The adenovirus L4 100-kilodalton protein is necessary for efficient translation of viral late mRNA species.

Hayes BW, Telling GC, Myat MM, Williams JF, Flint SJ.

J Virol. 1990 Jun;64(6):2732-42.

Supplemental Content

Loading ...
Support Center