Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development.

Flanagan-Steet H, Christian C, Lu PN, Aarnio-Peterson M, Sanman L, Archer-Hartmann S, Azadi P, Bogyo M, Steet RA.

Cell Rep. 2018 Mar 13;22(11):2964-2977. doi: 10.1016/j.celrep.2018.02.066.

2.

Altered Met receptor phosphorylation and LRP1-mediated uptake in cells lacking carbohydrate-dependent lysosomal targeting.

Aarnio-Peterson M, Zhao P, Yu SH, Christian C, Flanagan-Steet H, Wells L, Steet R.

J Biol Chem. 2017 Sep 8;292(36):15094-15104. doi: 10.1074/jbc.M117.790139. Epub 2017 Jul 19.

3.

Enzyme-specific differences in mannose phosphorylation between GlcNAc-1-phosphotransferase αβ and γ subunit deficient zebrafish support cathepsin proteases as early mediators of mucolipidosis pathology.

Flanagan-Steet H, Matheny C, Petrey A, Parker J, Steet R.

Biochim Biophys Acta. 2016 Sep;1860(9):1845-53. doi: 10.1016/j.bbagen.2016.05.029. Epub 2016 May 27.

4.

O-Linked β-N-acetylglucosamine (O-GlcNAc) Acts as a Glucose Sensor to Epigenetically Regulate the Insulin Gene in Pancreatic Beta Cells.

Durning SP, Flanagan-Steet H, Prasad N, Wells L.

J Biol Chem. 2016 Jan 29;291(5):2107-18. doi: 10.1074/jbc.M115.693580. Epub 2015 Nov 23.

5.

Cathepsin-Mediated Alterations in TGFß-Related Signaling Underlie Disrupted Cartilage and Bone Maturation Associated With Impaired Lysosomal Targeting.

Flanagan-Steet H, Aarnio M, Kwan B, Guihard P, Petrey A, Haskins M, Blanchard F, Steet R.

J Bone Miner Res. 2016 Mar;31(3):535-48. doi: 10.1002/jbmr.2722. Epub 2015 Oct 13.

6.

Abnormal cartilage development and altered N-glycosylation in Tmem165-deficient zebrafish mirrors the phenotypes associated with TMEM165-CDG.

Bammens R, Mehta N, Race V, Foulquier F, Jaeken J, Tiemeyer M, Steet R, Matthijs G, Flanagan-Steet H.

Glycobiology. 2015 Jun;25(6):669-82. doi: 10.1093/glycob/cwv009. Epub 2015 Jan 21.

7.

Analysis of mucolipidosis II/III GNPTAB missense mutations identifies domains of UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase involved in catalytic function and lysosomal enzyme recognition.

Qian Y, van Meel E, Flanagan-Steet H, Yox A, Steet R, Kornfeld S.

J Biol Chem. 2015 Jan 30;290(5):3045-56. doi: 10.1074/jbc.M114.612507. Epub 2014 Dec 11.

8.

Selective exo-enzymatic labeling of N-glycans on the surface of living cells by recombinant ST6Gal I.

Mbua NE, Li X, Flanagan-Steet HR, Meng L, Aoki K, Moremen KW, Wolfert MA, Steet R, Boons GJ.

Angew Chem Int Ed Engl. 2013 Dec 2;52(49):13012-5. doi: 10.1002/anie.201307095. Epub 2013 Oct 15.

9.

A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation.

Boccuto L, Aoki K, Flanagan-Steet H, Chen CF, Fan X, Bartel F, Petukh M, Pittman A, Saul R, Chaubey A, Alexov E, Tiemeyer M, Steet R, Schwartz CE.

Hum Mol Genet. 2014 Jan 15;23(2):418-33. doi: 10.1093/hmg/ddt434. Epub 2013 Sep 10.

10.

Abnormal accumulation and recycling of glycoproteins visualized in Niemann-Pick type C cells using the chemical reporter strategy.

Mbua NE, Flanagan-Steet H, Johnson S, Wolfert MA, Boons GJ, Steet R.

Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10207-12. doi: 10.1073/pnas.1221105110. Epub 2013 Jun 3.

11.

The DMAP interaction domain of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is a substrate recognition module.

Qian Y, Flanagan-Steet H, van Meel E, Steet R, Kornfeld SA.

Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10246-51. doi: 10.1073/pnas.1308453110. Epub 2013 Jun 3.

12.

A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrate-accumulation mechanism for N-linked glycosylation deficiency.

Cline A, Gao N, Flanagan-Steet H, Sharma V, Rosa S, Sonon R, Azadi P, Sadler KC, Freeze HH, Lehrman MA, Steet R.

Mol Biol Cell. 2012 Nov;23(21):4175-87. doi: 10.1091/mbc.E12-05-0411. Epub 2012 Sep 5.

13.

Lanthanide binding and IgG affinity construct: potential applications in solution NMR, MRI, and luminescence microscopy.

Barb AW, Ho TG, Flanagan-Steet H, Prestegard JH.

Protein Sci. 2012 Oct;21(10):1456-66. doi: 10.1002/pro.2133. Epub 2012 Aug 22.

14.

"Casting" light on the role of glycosylation during embryonic development: insights from zebrafish.

Flanagan-Steet HR, Steet R.

Glycoconj J. 2013 Jan;30(1):33-40. doi: 10.1007/s10719-012-9390-5. Epub 2012 May 26. Review.

15.

Polar dibenzocyclooctynes for selective labeling of extracellular glycoconjugates of living cells.

Friscourt F, Ledin PA, Mbua NE, Flanagan-Steet HR, Wolfert MA, Steet R, Boons GJ.

J Am Chem Soc. 2012 Mar 21;134(11):5381-9. doi: 10.1021/ja3002666. Epub 2012 Mar 9.

16.

Excessive activity of cathepsin K is associated with cartilage defects in a zebrafish model of mucolipidosis II.

Petrey AC, Flanagan-Steet H, Johnson S, Fan X, De la Rosa M, Haskins ME, Nairn AV, Moremen KW, Steet R.

Dis Model Mech. 2012 Mar;5(2):177-90. doi: 10.1242/dmm.008219. Epub 2011 Nov 1.

17.

Mislocalization of large ARF-GEFs as a potential mechanism for BFA resistance in COG-deficient cells.

Flanagan-Steet H, Johnson S, Smith RD, Bangiyeva J, Lupashin V, Steet R.

Exp Cell Res. 2011 Oct 1;317(16):2342-52. doi: 10.1016/j.yexcr.2011.06.005. Epub 2011 Jun 22.

18.

Sugar-free frosting, a homolog of SAD kinase, drives neural-specific glycan expression in the Drosophila embryo.

Baas S, Sharrow M, Kotu V, Middleton M, Nguyen K, Flanagan-Steet H, Aoki K, Tiemeyer M.

Development. 2011 Feb;138(3):553-63. doi: 10.1242/dev.055376.

19.

Selective yolk deposition and mannose phosphorylation of lysosomal glycosidases in zebrafish.

Fan X, Klein M, Flanagan-Steet HR, Steet R.

J Biol Chem. 2010 Oct 22;285(43):32946-53. doi: 10.1074/jbc.M110.158295. Epub 2010 Aug 20.

20.

Altered chondrocyte differentiation and extracellular matrix homeostasis in a zebrafish model for mucolipidosis II.

Flanagan-Steet H, Sias C, Steet R.

Am J Pathol. 2009 Nov;175(5):2063-75. doi: 10.2353/ajpath.2009.090210. Epub 2009 Oct 15.

21.

Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations.

Flanagan-Steet H, Fox MA, Meyer D, Sanes JR.

Development. 2005 Oct;132(20):4471-81. Epub 2005 Sep 14.

22.

Loss of FGF receptor 1 signaling reduces skeletal muscle mass and disrupts myofiber organization in the developing limb.

Flanagan-Steet H, Hannon K, McAvoy MJ, Hullinger R, Olwin BB.

Dev Biol. 2000 Feb 1;218(1):21-37.

Supplemental Content

Loading ...
Support Center