Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

Modulating CRISPR gene drive activity through nucleocytoplasmic localization of Cas9 in S. cerevisiae.

Goeckel ME, Basgall EM, Lewis IC, Goetting SC, Yan Y, Halloran M, Finnigan GC.

Fungal Biol Biotechnol. 2019 Feb 4;6:2. doi: 10.1186/s40694-019-0065-x. eCollection 2019.

2.

Development of a multi-locus CRISPR gene drive system in budding yeast.

Yan Y, Finnigan GC.

Sci Rep. 2018 Nov 22;8(1):17277. doi: 10.1038/s41598-018-34909-3.

3.

Corrigendum: Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae.

Basgall EM, Goetting SC, Goeckel ME, Giersch RM, Roggenkamp E, Schrock MN, Halloran M, Finnigan GC.

Microbiology. 2018 Jul;164(7):1004. doi: 10.1099/mic.0.000678. Epub 2018 May 29. No abstract available.

4.

Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae.

Basgall EM, Goetting SC, Goeckel ME, Giersch RM, Roggenkamp E, Schrock MN, Halloran M, Finnigan GC.

Microbiology. 2018 Apr;164(4):464-474. doi: 10.1099/mic.0.000635. Epub 2018 Feb 28. Erratum in: Microbiology. 2018 Jul;164(7):1004.

5.

Some assembly required: Contributions of Tom Stevens' lab to the V-ATPase field.

Graham LA, Finnigan GC, Kane PM.

Traffic. 2018 Jun;19(6):385-390. doi: 10.1111/tra.12559. Epub 2018 Mar 25. Review.

6.

Tuning CRISPR-Cas9 Gene Drives in Saccharomyces cerevisiae.

Roggenkamp E, Giersch RM, Schrock MN, Turnquist E, Halloran M, Finnigan GC.

G3 (Bethesda). 2018 Mar 2;8(3):999-1018. doi: 10.1534/g3.117.300557. Erratum in: G3 (Bethesda). 2018 Oct 3;8(10):3383.

7.

Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in S. cerevisiae.

Giersch RM, Finnigan GC.

Yale J Biol Med. 2017 Dec 19;90(4):643-651. eCollection 2017 Dec. Review.

8.

Method for Multiplexing CRISPR/Cas9 in Saccharomyces cerevisiae Using Artificial Target DNA Sequences.

Giersch RM, Finnigan GC.

Bio Protoc. 2017 Sep 20;7(18). pii: e2557. doi: 10.21769/BioProtoc.2557.

9.

CRISPR-UnLOCK: Multipurpose Cas9-Based Strategies for Conversion of Yeast Libraries and Strains.

Roggenkamp E, Giersch RM, Wedeman E, Eaton M, Turnquist E, Schrock MN, Alkotami L, Jirakittisonthon T, Schluter-Pascua SE, Bayne GH, Wasko C, Halloran M, Finnigan GC.

Front Microbiol. 2017 Sep 20;8:1773. doi: 10.3389/fmicb.2017.01773. eCollection 2017.

10.

TOR Complex 2-Regulated Protein Kinase Fpk1 Stimulates Endocytosis via Inhibition of Ark1/Prk1-Related Protein Kinase Akl1 in Saccharomyces cerevisiae.

Roelants FM, Leskoske KL, Pedersen RTA, Muir A, Liu JM, Finnigan GC, Thorner J.

Mol Cell Biol. 2017 Mar 17;37(7). pii: e00627-16. doi: 10.1128/MCB.00627-16. Print 2017 Apr 1.

11.

Septin-Associated Protein Kinases in the Yeast Saccharomyces cerevisiae.

Perez AM, Finnigan GC, Roelants FM, Thorner J.

Front Cell Dev Biol. 2016 Nov 1;4:119. eCollection 2016. Review.

12.

Detection of protein-protein interactions at the septin collar in Saccharomyces cerevisiae using a tripartite split-GFP system.

Finnigan GC, Duvalyan A, Liao EN, Sargsyan A, Thorner J.

Mol Biol Cell. 2016 Sep 1;27(17):2708-25. doi: 10.1091/mbc.E16-05-0337. Epub 2016 Jul 6.

13.

Coordinate action of distinct sequence elements localizes checkpoint kinase Hsl1 to the septin collar at the bud neck in Saccharomyces cerevisiae.

Finnigan GC, Sterling SM, Duvalyan A, Liao EN, Sargsyan A, Garcia G 3rd, Nogales E, Thorner J.

Mol Biol Cell. 2016 Jul 15;27(14):2213-33. doi: 10.1091/mbc.E16-03-0177. Epub 2016 May 18.

14.
15.

Assembly, molecular organization, and membrane-binding properties of development-specific septins.

Garcia G 3rd, Finnigan GC, Heasley LR, Sterling SM, Aggarwal A, Pearson CG, Nogales E, McMurray MA, Thorner J.

J Cell Biol. 2016 Feb 29;212(5):515-29. doi: 10.1083/jcb.201511029.

16.
17.

The Carboxy-Terminal Tails of Septins Cdc11 and Shs1 Recruit Myosin-II Binding Factor Bni5 to the Bud Neck in Saccharomyces cerevisiae.

Finnigan GC, Booth EA, Duvalyan A, Liao EN, Thorner J.

Genetics. 2015 Jul;200(3):843-62. doi: 10.1534/genetics.115.176503. Epub 2015 May 12.

18.

Comprehensive Genetic Analysis of Paralogous Terminal Septin Subunits Shs1 and Cdc11 in Saccharomyces cerevisiae.

Finnigan GC, Takagi J, Cho C, Thorner J.

Genetics. 2015 Jul;200(3):821-41. doi: 10.1534/genetics.115.176495. Epub 2015 May 12.

19.

Sorting of the yeast vacuolar-type, proton-translocating ATPase enzyme complex (V-ATPase): identification of a necessary and sufficient Golgi/endosomal retention signal in Stv1p.

Finnigan GC, Cronan GE, Park HJ, Srinivasan S, Quiocho FA, Stevens TH.

J Biol Chem. 2012 Jun 1;287(23):19487-500. doi: 10.1074/jbc.M112.343814. Epub 2012 Apr 11.

20.

Evolution of increased complexity in a molecular machine.

Finnigan GC, Hanson-Smith V, Stevens TH, Thornton JW.

Nature. 2012 Jan 9;481(7381):360-4. doi: 10.1038/nature10724.

21.

The reconstructed ancestral subunit a functions as both V-ATPase isoforms Vph1p and Stv1p in Saccharomyces cerevisiae.

Finnigan GC, Hanson-Smith V, Houser BD, Park HJ, Stevens TH.

Mol Biol Cell. 2011 Sep;22(17):3176-91. doi: 10.1091/mbc.E11-03-0244. Epub 2011 Jul 7.

22.

A genome-wide enhancer screen implicates sphingolipid composition in vacuolar ATPase function in Saccharomyces cerevisiae.

Finnigan GC, Ryan M, Stevens TH.

Genetics. 2011 Mar;187(3):771-83. doi: 10.1534/genetics.110.125567. Epub 2010 Dec 31.

Supplemental Content

Loading ...
Support Center